論文の概要: Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach
- arxiv url: http://arxiv.org/abs/2001.04560v1
- Date: Mon, 13 Jan 2020 23:23:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 00:17:42.173780
- Title: Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach
- Title(参考訳): a joint navigation and tracking approach of uavs (特集 レーダーネットワーク)
- Authors: Anna Guerra, Davide Dardari, Petar M. Djuric
- Abstract要約: 新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
- 参考スコア(独自算出の注目度): 36.587096293618366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays there is a growing research interest on the possibility of enriching
small flying robots with autonomous sensing and online navigation capabilities.
This will enable a large number of applications spanning from remote
surveillance to logistics, smarter cities and emergency aid in hazardous
environments. In this context, an emerging problem is to track unauthorized
small unmanned aerial vehicles (UAVs) hiding behind buildings or concealing in
large UAV networks. In contrast with current solutions mainly based on static
and on-ground radars, this paper proposes the idea of a dynamic radar network
of UAVs for real-time and high-accuracy tracking of malicious targets. To this
end, we describe a solution for real-time navigation of UAVs to track a dynamic
target using heterogeneously sensed information. Such information is shared by
the UAVs with their neighbors via multi-hops, allowing tracking the target by a
local Bayesian estimator running at each agent. Since not all the paths are
equal in terms of information gathering point-of-view, the UAVs plan their own
trajectory by minimizing the posterior covariance matrix of the target state
under UAV kinematic and anti-collision constraints. Our results show how a
dynamic network of radars attains better localization results compared to a
fixed configuration and how the on-board sensor technology impacts the accuracy
in tracking a target with different radar cross sections, especially in non
line-of-sight (NLOS) situations.
- Abstract(参考訳): 現在、自律的なセンシングとオンラインナビゲーション機能を備えた小型飛行ロボットの可能性に関する研究が増えている。
これにより、遠隔監視からロジスティクス、よりスマートな都市、危険な環境での緊急支援に至るまで、多くのアプリケーションが可能になる。
このような状況下では、未許可の小型無人航空機(UAV)を建物の後ろに隠したり、大規模なUAVネットワークに隠蔽したりするのが問題となる。
静的および地上レーダーを主とする現状のソリューションとは対照的に,悪意のあるターゲットをリアルタイムかつ高精度に追跡するためのUAVの動的レーダネットワークを提案する。
そこで本稿では,UAVのリアルタイムナビゲーションによる動的目標追跡手法について述べる。
このような情報は、UAVが隣人とマルチホップで共有し、各エージェントで実行されている地元のベイズ推定器によってターゲットを追跡することができる。
すべての経路が情報収集の観点で等しいわけではないので、uavはuavキネマティックおよびアンチコリシオン制約の下でターゲット状態の後方共分散行列を最小化し、独自の軌道を計画する。
本研究は, レーダーの動的ネットワークが, 固定配置に比べて位置決め精度が良いこと, 搭載センサー技術が, 特に非視線(NLOS)状況において, 異なるレーダー断面による目標追跡の精度に与える影響を示すものである。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
UAVスワーミングの有効性は、ジャミング技術によって著しく損なわれる可能性がある。
UAV群集が集団知能を利用してジャム領域を予測する手法が提案されている。
マルチエージェント制御アルゴリズムを使用して、UAVスワムを分散し、ジャミングを回避し、ターゲットに到達すると再グループ化する。
論文 参考訳(メタデータ) (2024-03-13T07:28:05Z) - Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds
Using PointNet [0.7067443325368975]
統合のための重要な前提条件は、安全な運用を確保するために、状況認識を増強したUAVを装備することである。
本研究は,複数の衝突リスクを同時に識別するために,レーダ技術を活用した航空点雲のエンドツーエンドセマンティックセマンティックセマンティックセグメンテーションを実現する。
我々の知る限り、これは空中における複数の衝突脅威の同時識別に対処する最初のアプローチであり、94%の精度を達成する。
論文 参考訳(メタデータ) (2023-11-06T16:04:58Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。