論文の概要: Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication
- arxiv url: http://arxiv.org/abs/2105.10716v1
- Date: Sat, 22 May 2021 12:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 09:00:48.770303
- Title: Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication
- Title(参考訳): リアルタイムUAVセマンティック通信のための注意に基づく強化学習
- Authors: Won Joon Yun, Byungju Lim, Soyi Jung, Young-Chai Ko, Jihong Park,
Joongheon Kim, Mehdi Bennis
- Abstract要約: 移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
- 参考スコア(独自算出の注目度): 53.46235596543596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we study the problem of air-to-ground ultra-reliable and
low-latency communication (URLLC) for a moving ground user. This is done by
controlling multiple unmanned aerial vehicles (UAVs) in real time while
avoiding inter-UAV collisions. To this end, we propose a novel multi-agent deep
reinforcement learning (MADRL) framework, coined a graph attention exchange
network (GAXNet). In GAXNet, each UAV constructs an attention graph locally
measuring the level of attention to its neighboring UAVs, while exchanging the
attention weights with other UAVs so as to reduce the attention mismatch
between them. Simulation results corroborates that GAXNet achieves up to 4.5x
higher rewards during training. At execution, without incurring inter-UAV
collisions, GAXNet achieves 6.5x lower latency with the target 0.0000001 error
rate, compared to a state-of-the-art baseline framework.
- Abstract(参考訳): 本稿では,移動地利用者を対象とした空対地超信頼性低遅延通信(URLLC)の問題点について検討する。
これは複数の無人航空機(uav)をリアルタイムで制御し、uav間の衝突を避けることで行われる。
そこで本稿では,グラフアテンション交換ネットワーク(GAXNet)を作成したマルチエージェント深部強化学習(MADRL)フレームワークを提案する。
GAXNetでは、各UAVは、近隣のUAVに対する注意度を局所的に測定するアテンショングラフを構築し、他のUAVとアテンション重みを交換することで、それらの間のアテンションミスマッチを低減する。
シミュレーションの結果は、GAXNetがトレーニング中に最大4.5倍の報酬を達成することを裏付けている。
GAXNetは、UAV間の衝突を発生させることなく、ターゲットの0.0000001エラー率に対して6.5倍のレイテンシを実現している。
関連論文リスト
- Graph Attention-based Reinforcement Learning for Trajectory Design and
Resource Assignment in Multi-UAV Assisted Communication [20.79743323142469]
UAV基地局(UAV BS)が未知の環境で軌道設計と資源割り当てを実現することは困難である。
通信ネットワークにおけるUAV BS間の協調と競合はマルコフゲーム問題に繋がる。
本稿では,マルチUAV支援通信問題を解決するために,新しいグラフアテンション型マルチエージェント信頼領域(GA-MATR)強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T14:37:06Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
無人航空機(UAV)とメタバースの相乗効果は、UAVメタバースと呼ばれる新しいパラダイムを生み出している。
本稿では,UAVメタバースにおける効率的なUTマイグレーションのためのプルーニング技術に基づく,機械学習に基づく小さなゲームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T02:14:13Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - A Convolutional Attention Based Deep Network Solution for UAV Network
Attack Recognition over Fading Channels and Interference [3.1230069539161405]
本研究は、クラスタ化遅延線(CDL)チャネル上に多重化(OFDM)受信機を備えたUAVの攻撃を検出するためのディープラーニング(DL)アプローチを提供する。
予測アルゴリズムは、訓練中に発生しない攻撃識別に関して一般化可能である。
攻撃認識のタイミング要件に関するより深い調査では、訓練後、攻撃開始後に必要な最低時間は100ミリ秒であることが示されている。
論文 参考訳(メタデータ) (2022-07-16T22:08:12Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本論文では,複数のセルコネクテッドUAVの衝突のない経路を探索する。
本稿では,オンライン信号対干渉+雑音比マッピングを用いたオフライン時間差学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-09T16:52:33Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。