Simulating fermions in spin-dependent potentials with spin models on an
energy lattice
- URL: http://arxiv.org/abs/2001.04615v1
- Date: Tue, 14 Jan 2020 04:08:56 GMT
- Title: Simulating fermions in spin-dependent potentials with spin models on an
energy lattice
- Authors: Michael L. Wall
- Abstract summary: We study spin-1/2 fermions in spin dependent potentials under the emphspin model approximation.
We show that the spin model approximation is accurate for weak interactions.
We present numerical techniques that are useful for analysis of spin models on an energy lattice.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study spin-1/2 fermions in spin dependent potentials under the \emph{spin
model approximation}, in which interatomic collisions that change the total
occupation of single-particle modes are ignored. The spin model approximation
maps the interacting fermion problem to an ensemble of lattice spin models in
energy space, where spin-spin interactions are long-ranged and
spin-anisotropic. We show that the spin model approximation is accurate for
weak interactions compared to the harmonic oscillator frequency, and captures
the collective spin dynamics to timescales much longer than would be expected
from perturbation theory. We explore corrections to the spin model, and the
relative importance of corrections when realistic anharmonic potential
corrections are taken into account. Additionally, we present numerical
techniques that are useful for analysis of spin models on an energy lattice,
including enacting a change of single-particle basis on a many-body state as an
effective time evolution, and fitting of spatially inhomogeneous long-range
interactions with exponentials. This latter technique is useful for
constructing matrix product operators for use in DMRG analyses, and may have
broader applicability within the tensor network community.
Related papers
- Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of Spin Helices in the One-Dimensional $XX$ Model [0.0]
We analytically study the dynamics of spin helices in the one-dimensional $XX$ model.
We find a separation of timescales between the in-plane and out-of-plane spin dynamics.
One of our key findings is that the spin correlation functions decay as $t-1/2$ at long time, in contrast to the experimentally observed exponential decay.
arXiv Detail & Related papers (2021-10-12T13:03:29Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Driven-dissipative Ising Model: An exact field-theoretical analysis [0.0]
Driven-dissipative many-body systems are difficult to analyze analytically due to their non-equilibrium dynamics, dissipation and many-body interactions.
We develop an exact field-theoretical analysis and a diagrammatic representation of the spin model that can be understood from a simple scattering picture.
arXiv Detail & Related papers (2021-01-13T19:00:21Z) - Tunable-spin-model generation with spin-orbit-coupled fermions in
optical lattices [0.5249805590164902]
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux.
At half filling, the system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model.
arXiv Detail & Related papers (2020-11-03T16:54:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.