Steering spin fluctuations in lattice systems via two-tone Floquet engineering
- URL: http://arxiv.org/abs/2401.03889v2
- Date: Tue, 24 Dec 2024 00:01:46 GMT
- Title: Steering spin fluctuations in lattice systems via two-tone Floquet engineering
- Authors: Ruben Peña, Felipe Torres, Guillermo Romero,
- Abstract summary: We consider a one-dimensional spin-1/2 lattice with periodically modulated spin exchanges using parametric resonances.<n>The stroboscopic dynamics generated from distributed spin exchange modulations lead to spin pair fluctuations reaching quasi-maximally correlated states.<n>We present a protocol to control the interacting many-body dynamics, producing spatial and temporal localization of correlated spin pairs.
- Score: 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We report on the control of spin pair fluctuations using two-tone Floquet engineering. We consider a one-dimensional spin-1/2 lattice with periodically modulated spin exchanges using parametric resonances. The stroboscopic dynamics generated from distributed spin exchange modulations lead to spin pair fluctuations reaching quasi-maximally correlated states and a subharmonic response in local observables, breaking the discrete-time translational symmetry. We present a protocol to control the interacting many-body dynamics, producing spatial and temporal localization of correlated spin pairs via dynamically breaking correlated spin pairs from the edges towards the center of the lattice. Our result reveals how spin fluctuations distribute in a heterogeneous lattice depending on parametric resonances. This may open new routes for exploring distinct nonequilibrium states of matter and the conduction of quasiparticles in quantum materials.
Related papers
- Spin Squeezing via One-Axis Twisting in a Quadrupolar NMR system under relaxation effects [0.0]
The origin of spin squeezing is attributed to the interaction between the nuclear quadrupole moment and the electric field gradients in the molecular environment.
Non-Cartesian angular momentum operators are proposed, with their variances catching the quantum effects during the dynamics.
An upper bound for the squeezing parameter and the Heisenberg uncertainty at thermal equilibrium are also predicted for any spin quantum number.
arXiv Detail & Related papers (2025-04-08T16:47:41Z) - Spin Squeezing of Macroscopic Nuclear Spin Ensembles [44.99833362998488]
Squeezing macroscopic spin ensembles may prove to be a useful technique for fundamental physics experiments.
We analyze the squeezing dynamics in the presence of decoherence and finite spin polarization, showing that achieving 7 dB spin squeezing is feasible in several nuclear spin systems.
arXiv Detail & Related papers (2025-02-19T21:16:54Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.
Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Floquet-engineered system-reservoir interaction in the transverse field Ising model [0.0]
We report on a Floquet-engineered transverse field Ising model for the controlled propagation in one dimension of spin waves.
Our schemes may have applications in coupling-decoupling schemes for system-reservoir interaction, and routing in quantum networks.
arXiv Detail & Related papers (2025-01-13T17:58:34Z) - Quantum many-body spin ratchets [0.0]
We show that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility.
We also show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
arXiv Detail & Related papers (2024-06-03T17:51:36Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - The Effect of Duschinskii Rotations on Spin-Dependent Electron Transfer
Dynamics [0.0]
We investigate spin-dependent electron transfer in the presence of a Duschinskii rotation.
In particular, we propagate dynamics for a two-level model system for which spin-orbit coupling introduces an interstate coupling of the form $eiWx$.
arXiv Detail & Related papers (2022-08-29T05:49:59Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Effects of critical correlations on quantum percolation in two
dimensions [0.0]
We consider a two-dimensional tight-binding model that interacts with a background of classical spins in thermal equilibrium.
To capture the salient features of the classical transition, we focus on the strong coupling limit.
We provide evidence that the classical phase transition might induce a delocalization-localization transition in the quantum system at certain energies.
arXiv Detail & Related papers (2022-03-28T18:00:01Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Precession of entangled spin and pseudospin in double quantum dots [0.0]
Quantum dot spin valves are characterized by exchange fields which induce spin precession and generate current spin resonances.
We generalize this setup to allow for arbitrary spin and orbital polarization of the leads.
We observe for both vectors a delicate interplay of decoherence, pumping and precession which can only be understood by considering the dynamics of the spin-pseudospin correlators.
arXiv Detail & Related papers (2022-02-08T23:00:00Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Controlling directed atomic motion and second-order tunneling of a
spin-orbit-coupled atom in optical lattices [8.118975693510722]
We show that the spin-orbit (SO) coupling adds some new results to the tunneling dynamics in both multiphoton resonance and far-off-resonance parameter regimes.
These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.
arXiv Detail & Related papers (2020-11-03T00:54:03Z) - Rectification in Nonequilibrium Steady States of Open Many-Body Systems [0.0]
We study how translationally invariant couplings of many-particle systems and nonequilibrium baths can be used to rectify particle currents.
We show that unidirectional particle transport can occur when a Lindblad operator is reciprocal provided that the inversion symmetry and the time-reversal symmetry of the microscopic Hamiltonian are broken.
arXiv Detail & Related papers (2020-09-02T06:29:09Z) - Simulating fermions in spin-dependent potentials with spin models on an
energy lattice [0.0]
We study spin-1/2 fermions in spin dependent potentials under the emphspin model approximation.
We show that the spin model approximation is accurate for weak interactions.
We present numerical techniques that are useful for analysis of spin models on an energy lattice.
arXiv Detail & Related papers (2020-01-14T04:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.