論文の概要: Structured Consistency Loss for semi-supervised semantic segmentation
- arxiv url: http://arxiv.org/abs/2001.04647v2
- Date: Mon, 22 Nov 2021 04:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 12:42:38.520701
- Title: Structured Consistency Loss for semi-supervised semantic segmentation
- Title(参考訳): 半教師付きセマンティックセグメンテーションのための構造的一貫性損失
- Authors: Jongmok Kim, Jooyoung Jang, Hyunwoo Park, SeongAh Jeong
- Abstract要約: 整合性喪失は、半教師付き学習の最近の研究において、問題解決において重要な役割を担っている。
本稿では,既存の研究の限界に対処する構造的整合損失を提案する。
我々は,セマンティックセグメンテーションにおける最先端の半教師あり学習の優位性を初めて提示する。
- 参考スコア(独自算出の注目度): 1.4146420810689415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The consistency loss has played a key role in solving problems in recent
studies on semi-supervised learning. Yet extant studies with the consistency
loss are limited to its application to classification tasks; extant studies on
semi-supervised semantic segmentation rely on pixel-wise classification, which
does not reflect the structured nature of characteristics in prediction. We
propose a structured consistency loss to address this limitation of extant
studies. Structured consistency loss promotes consistency in inter-pixel
similarity between teacher and student networks. Specifically, collaboration
with CutMix optimizes the efficient performance of semi-supervised semantic
segmentation with structured consistency loss by reducing computational burden
dramatically. The superiority of proposed method is verified with the
Cityscapes; The Cityscapes benchmark results with validation and with test data
are 81.9 mIoU and 83.84 mIoU respectively. This ranks the first place on the
pixel-level semantic labeling task of Cityscapes benchmark suite. To the best
of our knowledge, we are the first to present the superiority of
state-of-the-art semi-supervised learning in semantic segmentation.
- Abstract(参考訳): 半教師付き学習の最近の研究において、一貫性の喪失は問題解決に重要な役割を果たしている。
半教師付き意味セグメンテーションに関する現存する研究は、予測における特徴の構造的性質を反映しない画素単位の分類に依存している。
本稿では,既存の研究の限界に対処する構造的整合損失を提案する。
構造的整合性損失は教師と学生のネットワーク間の画素間類似性の一貫性を促進する。
具体的には,半教師付きセマンティックセグメンテーションと構造的整合性損失の効率性を最適化し,計算負荷を劇的に低減する。
都市景観ベンチマークの結果は検証で81.9miou, 試験データで83.84miouであった。
これはcityscapesベンチマークスイートのピクセルレベルの意味的ラベル付けタスクの第一位である。
セマンティックセグメンテーションにおける最先端の半教師あり学習の優位性を示すのは,私たちの知る限りでは初めてである。
関連論文リスト
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
医用画像分割のための半教師付き学習(SSL)は難しいが、非常に実践的な課題である。
セムシム(SemSim)という名前のFixMatchに基づく新しいフレームワークを提案する。
SemSimは3つの公開セグメンテーションベンチマークで最先端の手法よりも一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T12:31:37Z) - Affinity-Graph-Guided Contractive Learning for Pretext-Free Medical Image Segmentation with Minimal Annotation [55.325956390997]
本稿では,医用画像セグメンテーションのための親和性グラフ誘導半教師付きコントラスト学習フレームワーク(Semi-AGCL)を提案する。
このフレームワークは、まず、ロバストな初期特徴空間を提供する平均パッチエントロピー駆動のパッチ間サンプリング法を設計する。
完全アノテーションセットの10%に過ぎず, 完全注釈付きベースラインの精度にアプローチし, 限界偏差は2.52%に過ぎなかった。
論文 参考訳(メタデータ) (2024-10-14T10:44:47Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Semi-Supervised Confidence-Level-based Contrastive Discrimination for
Class-Imbalanced Semantic Segmentation [1.713291434132985]
我々は,クラス不均衡なセマンティックセグメンテーションの課題に対して,半教師付きコントラスト学習フレームワークを提案する。
提案手法は,3.5%のラベル付きデータで良好なセグメンテーション結果が得られる。
論文 参考訳(メタデータ) (2022-11-28T04:58:27Z) - Region-level Contrastive and Consistency Learning for Semi-Supervised
Semantic Segmentation [30.1884540364192]
半教師付きセマンティックセグメンテーションのための領域レベルのコントラスト・一貫性学習フレームワーク(RC2L)を提案する。
具体的には、まず、地域マスクコントラスト(RMC)損失と地域特徴コントラスト(RFC)損失を、地域レベルのコントラスト特性を達成するために提案する。
提案する領域レベルのコントラストと一貫性の規則化に基づいて,半教師付きセマンティックセグメンテーションのための領域レベルのコントラストと一貫性の学習フレームワーク(RC2L)を開発する。
論文 参考訳(メタデータ) (2022-04-28T07:22:47Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
フェデレーション学習は、ネットワークエッジにおける分散機械学習の第一候補である。
既存のアルゴリズムは、性能の緩やかな収束や堅牢性の問題に直面している。
そこで本稿では,損失低減に対する最適コンテキスト依存境界を実現するためのコンテキストアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T21:42:31Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
本研究では、教師なしデータ拡張を行うために、微分可能な幾何ワープを提案する。
また,平均教師数を改善するために,新しい対角的二重学習フレームワークを提案する。
我々のソリューションは、両方のデータセットで得られるパフォーマンスと最先端の結果を大幅に改善します。
論文 参考訳(メタデータ) (2022-03-05T17:36:17Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
セマンティックセグメンテーションのためのシンプルで効果的な半教師付き学習フレームワークを提案する。
単純な設計とトレーニングのテクニックのセットは、半教師付きセマンティックセグメンテーションの性能を大幅に向上させることができる。
本手法は,Cityscapes と Pascal VOC データセットの半教師付き設定において,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-04-15T06:01:39Z) - A Weakly-Supervised Semantic Segmentation Approach based on the Centroid
Loss: Application to Quality Control and Inspection [6.101839518775968]
本稿では,新しい損失関数を用いた弱教師付きセマンティックセマンティックセマンティクス手法の提案と評価を行う。
アプローチのパフォーマンスは,2つの業界関連ケーススタディのデータセットに対して評価される。
論文 参考訳(メタデータ) (2020-10-26T09:08:21Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。