論文の概要: SDF-TopoNet: A Two-Stage Framework for Tubular Structure Segmentation via SDF Pre-training and Topology-Aware Fine-Tuning
- arxiv url: http://arxiv.org/abs/2503.14523v2
- Date: Thu, 20 Mar 2025 01:43:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 12:14:47.879606
- Title: SDF-TopoNet: A Two-Stage Framework for Tubular Structure Segmentation via SDF Pre-training and Topology-Aware Fine-Tuning
- Title(参考訳): SDF-TopoNet: SDF事前訓練とトポロジー対応ファインチューニングによる管状構造セグメンテーションのための2段階フレームワーク
- Authors: Siyi Wu, Leyi Zhao, Haotian Ma, Xinyuan Song,
- Abstract要約: 主な課題は、計算効率を維持しながら位相的正しさを確保することである。
改良されたトポロジ対応セグメンテーションフレームワークである textbfSDF-TopoNet を提案する。
SDF-TopoNetは, 位相的精度と定量的セグメンテーションの指標の両方において, 既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 2.3436632098950456
- License:
- Abstract: Accurate segmentation of tubular and curvilinear structures, such as blood vessels, neurons, and road networks, is crucial in various applications. A key challenge is ensuring topological correctness while maintaining computational efficiency. Existing approaches often employ topological loss functions based on persistent homology, such as Betti error, to enforce structural consistency. However, these methods suffer from high computational costs and are insensitive to pixel-level accuracy, often requiring additional loss terms like Dice or MSE to compensate. To address these limitations, we propose \textbf{SDF-TopoNet}, an improved topology-aware segmentation framework that enhances both segmentation accuracy and training efficiency. Our approach introduces a novel two-stage training strategy. In the pre-training phase, we utilize the signed distance function (SDF) as an auxiliary learning target, allowing the model to encode topological information without directly relying on computationally expensive topological loss functions. In the fine-tuning phase, we incorporate a dynamic adapter alongside a refined topological loss to ensure topological correctness while mitigating overfitting and computational overhead. We evaluate our method on five benchmark datasets. Experimental results demonstrate that SDF-TopoNet outperforms existing methods in both topological accuracy and quantitative segmentation metrics, while significantly reducing training complexity.
- Abstract(参考訳): 血管、神経細胞、道路網などの管状および線状構造の正確なセグメンテーションは、様々な用途において重要である。
主な課題は、計算効率を維持しながら位相的正しさを確保することである。
既存のアプローチでは、しばしば構造的一貫性を強制するために、ベティ誤差のような永続的ホモロジーに基づく位相的損失関数を用いる。
しかし、これらの手法は高い計算コストに悩まされ、ピクセルレベルの精度に敏感であり、しばしば補うためにDiceやMSEのような追加の損失項を必要とする。
これらの制約に対処するために, セグメンテーション精度とトレーニング効率を両立させるトポロジ対応セグメンテーションフレームワークである \textbf{SDF-TopoNet} を提案する。
本稿では,新たな2段階トレーニング戦略を提案する。
事前学習段階では,符号付き距離関数(SDF)を補助学習対象として利用し,計算コストのかかる位相損失関数に直接依存することなく,位相情報を符号化する。
微調整段階では、過度な適合と計算オーバーヘッドを軽減しつつ、トポロジカルな正しさを確保するために、洗練されたトポロジカルな損失を伴う動的アダプタを組み込む。
提案手法を5つのベンチマークデータセットで評価する。
実験の結果,SDF-TopoNetはトポロジカル精度と定量的セグメンテーションの指標の両方において既存の手法よりも優れており,トレーニングの複雑さは著しく低減されている。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
我々は、ディープラーニングのための堅牢なOoD一般化への道を探る。
まず,認識に必須でない特徴間の素早い相関を解消するための,新しい効果的なアプローチを提案する。
次に,OoDシナリオにおけるニューラルアーキテクチャ探索の強化問題について検討する。
論文 参考訳(メタデータ) (2024-10-25T20:50:32Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
異常き裂領域検出は典型的なバイナリセマンティックセグメンテーションタスクであり、アルゴリズムによって舗装面画像上のひび割れを表す画素を自動的に検出することを目的としている。
既存のディープラーニングベースの手法は、特定の公共舗装のデータセットで優れた結果を得たが、不均衡なデータセットでは性能が劇的に低下する。
画素レベルの異常き裂領域検出タスクに対して,条件付き生成逆ネットワーク(cGAN)に基づくディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-03T19:24:40Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
視覚赤外人物再識別タスク(VI-ReID)におけるグラフベースの手法は,2つの問題により,悪い一般化に悩まされている。
十分に訓練された入力特徴は、グラフトポロジーの学習を弱め、推論過程において十分に一般化されない。
本稿では,これらの問題に対処するためのCIFT法を提案する。
論文 参考訳(メタデータ) (2022-08-01T16:15:31Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
深部画像セグメンテーションネットワークを訓練し、位相精度を向上させる新しい手法を提案する。
1次元骨格や2次元パッチなど,位相的精度に重要なグローバル構造を明らかにする。
多様なデータセットに対して,DICEスコアとトポロジカルメトリクスの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-18T02:47:21Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。