論文の概要: Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features
- arxiv url: http://arxiv.org/abs/2001.04732v1
- Date: Tue, 14 Jan 2020 12:06:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 12:42:00.432045
- Title: Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features
- Title(参考訳): 視覚的特徴と局所的特徴を組み合わせたきめ細かい画像分類と検索
- Authors: Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez, Dimosthenis
Karatzas
- Abstract要約: 特に、テキストの存在は、コンピュータビジョンタスクの多様性に対処するために使用されるべき強力なガイドコンテンツを提供する。
本稿では,テキスト情報と視覚的手がかりを併用した細粒度分類と画像検索の課題に対処し,両者の本質的な関係を解明する。
- 参考スコア(独自算出の注目度): 8.317191999275536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text contained in an image carries high-level semantics that can be exploited
to achieve richer image understanding. In particular, the mere presence of text
provides strong guiding content that should be employed to tackle a diversity
of computer vision tasks such as image retrieval, fine-grained classification,
and visual question answering. In this paper, we address the problem of
fine-grained classification and image retrieval by leveraging textual
information along with visual cues to comprehend the existing intrinsic
relation between the two modalities. The novelty of the proposed model consists
of the usage of a PHOC descriptor to construct a bag of textual words along
with a Fisher Vector Encoding that captures the morphology of text. This
approach provides a stronger multimodal representation for this task and as our
experiments demonstrate, it achieves state-of-the-art results on two different
tasks, fine-grained classification and image retrieval.
- Abstract(参考訳): 画像に含まれるテキストは、よりリッチな画像理解を達成するために活用できる高レベルの意味論を持つ。
特に、単なるテキストの存在は、画像検索、きめ細かい分類、視覚的質問応答といったコンピュータビジョンタスクの多様性に取り組むために使用されるべき強力なガイドコンテンツを提供する。
本稿では,テクスト情報と視覚手がかりを併用した粒度分類と画像検索の問題に対処し,これら2つのモダリティ間の既存の本質的関係を理解する。
提案モデルの新規性は、テキストの形態をキャプチャするフィッシャーベクトル符号化とともに、テキスト単語の袋を構成するためのphoc記述子の使用である。
このアプローチは、このタスクに対してより強力なマルチモーダル表現を提供し、実験が示すように、きめ細かい分類と画像検索の2つの異なるタスクで最先端の結果を得る。
関連論文リスト
- You'll Never Walk Alone: A Sketch and Text Duet for Fine-Grained Image Retrieval [120.49126407479717]
事前学習したCLIPモデルを用いて,スケッチとテキストを効果的に組み合わせた新しい構成性フレームワークを提案する。
我々のシステムは、合成画像検索、ドメイン転送、きめ細かい生成における新しい応用にまで拡張する。
論文 参考訳(メタデータ) (2024-03-12T00:27:18Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
テキスト・ツー・イメージ・パーソナリティ検索(TIPR)の目的は、与えられたテキスト記述に従って特定の人物画像を取得することである。
本稿では,人物画像と対応するテキスト間のきめ細かいインタラクションとアライメントを構築するための新しいTIPRフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:23:46Z) - Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal
Contrastive Training [33.78990448307792]
画像テキスト検索は、視覚と言語間の意味的関係を理解するための中心的な問題である。
以前の作品では、全体像とテキストの粗い粒度の表現を単に学習するか、画像領域またはピクセルとテキストワードの対応を精巧に確立する。
本研究では、粗い表現学習ときめ細かい表現学習を統一した枠組みに組み合わせて、新しい視点から画像テキストの検索を行う。
論文 参考訳(メタデータ) (2023-06-15T00:19:13Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
CIR(Content-Based Image Retrieval)は,サンプル画像と補完テキストの合成を同時に解釈することで,対象画像の検索を目的とする。
本稿では,新しいアンダーラインtextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) とHybrid Counterfactual Training frameworkを用いてこの問題に取り組む。
論文 参考訳(メタデータ) (2022-07-09T07:14:44Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
本稿では,視覚的・テキスト的手がかりの形でマルチモーダルコンテンツを活用することで,微細な画像分類と検索の課題に取り組むことに焦点を当てる。
画像中の有意なオブジェクトとテキスト間の共通意味空間を学習することにより、マルチモーダル推論を行い、関係強化された特徴を得るためにグラフ畳み込みネットワークを用いる。
論文 参考訳(メタデータ) (2020-09-21T12:31:42Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。