論文の概要: Improving Image Captioning with Better Use of Captions
- arxiv url: http://arxiv.org/abs/2006.11807v1
- Date: Sun, 21 Jun 2020 14:10:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 11:29:38.224358
- Title: Improving Image Captioning with Better Use of Captions
- Title(参考訳): キャプションの有効利用による画像キャプションの改善
- Authors: Zhan Shi, Xu Zhou, Xipeng Qiu, Xiaodan Zhu
- Abstract要約: 本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
- 参考スコア(独自算出の注目度): 65.39641077768488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image captioning is a multimodal problem that has drawn extensive attention
in both the natural language processing and computer vision community. In this
paper, we present a novel image captioning architecture to better explore
semantics available in captions and leverage that to enhance both image
representation and caption generation. Our models first construct
caption-guided visual relationship graphs that introduce beneficial inductive
bias using weakly supervised multi-instance learning. The representation is
then enhanced with neighbouring and contextual nodes with their textual and
visual features. During generation, the model further incorporates visual
relationships using multi-task learning for jointly predicting word and
object/predicate tag sequences. We perform extensive experiments on the MSCOCO
dataset, showing that the proposed framework significantly outperforms the
baselines, resulting in the state-of-the-art performance under a wide range of
evaluation metrics.
- Abstract(参考訳): 画像キャプションは、自然言語処理とコンピュータビジョンコミュニティの両方で広く注目を集めているマルチモーダル問題である。
本稿では,キャプションで利用可能なセマンティクスをよりよく探求し,画像表現とキャプション生成の両面を強化するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
その表現は、そのテキストと視覚的特徴を持つ隣接ノードとコンテキストノードで拡張される。
生成中は、複数タスク学習を用いて、単語とオブジェクト/述語タグのシーケンスを共同で予測する。
MSCOCOデータセット上で広範囲な実験を行い、提案手法がベースラインを著しく上回り、その結果、幅広い評価基準下での最先端性能が得られることを示した。
関連論文リスト
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
本研究は,外部kNNメモリを用いた画像キャプションモデルの構築に向けた新しい手法を提案する。
具体的には、視覚的類似性に基づく知識検索コンポーネントを組み込んだ2つのモデル変種を提案する。
我々はCOCOデータセットとnocapsデータセットに対する我々のアプローチを実験的に検証し、明示的な外部メモリを組み込むことでキャプションの品質を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2024-05-21T18:02:07Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
対照的に訓練された視覚言語モデルは、視覚と言語表現学習において顕著な進歩を遂げた。
近年の研究では、対象、属性、関係性に対して構成的推論を行う能力に厳しい制限が強調されている。
論文 参考訳(メタデータ) (2023-05-23T08:28:38Z) - Multi-modal reward for visual relationships-based image captioning [4.354364351426983]
本稿では、画像のシーングラフから抽出した視覚的関係情報を画像の空間的特徴マップに融合させることにより、画像キャプションのためのディープニューラルネットワークアーキテクチャを提案する。
次に、共通埋め込み空間における言語と視覚の類似性の組み合わせを用いて、提案するネットワークの深層強化学習のためにマルチモーダル報酬関数を導入する。
論文 参考訳(メタデータ) (2023-03-19T20:52:44Z) - Guiding Attention using Partial-Order Relationships for Image Captioning [2.620091916172863]
誘導注意ネットワーク機構は、視覚シーンとテキスト記述の関係を利用する。
この埋め込み空間は、共有セマンティック空間における類似の画像、トピック、キャプションを許容する。
MSCOCOデータセットに基づく実験結果は,我々のアプローチの競争力を示している。
論文 参考訳(メタデータ) (2022-04-15T14:22:09Z) - Exploring Semantic Relationships for Unpaired Image Captioning [40.401322131624866]
視覚領域と言語領域を高レベルな意味情報でブリッジすることで、不適切な画像キャプションを実現する。
画像の理解を深めるため,セマンティック・リレーション・エクスプローラーを提案する。
提案手法は,CIDErのスコアが8%に向上したペア設定下で,5つの強いベースラインを向上する。
論文 参考訳(メタデータ) (2021-06-20T09:10:11Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
ビデオキャプションのためのマルチモーダルなニューラルシンボリック表現を学習するための新しいモデルアーキテクチャを提案する。
本手法では,ビデオ間の関係を学習する辞書学習手法と,そのペアによるテキスト記述を用いる。
論文 参考訳(メタデータ) (2020-11-18T20:21:19Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
本稿では,詳細な視覚表現と視覚認識言語表現を活用することで,句オブジェクトの関連性をモデル化するアルゴリズムを提案する。
広く採用されているFlickr30kデータセットで実施された実験は、既存の弱教師付き手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-10-12T00:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。