Modeling and Counteracting Exposure Bias in Recommender Systems
- URL: http://arxiv.org/abs/2001.04832v1
- Date: Wed, 1 Jan 2020 00:12:34 GMT
- Title: Modeling and Counteracting Exposure Bias in Recommender Systems
- Authors: Sami Khenissi and Olfa Nasraoui
- Abstract summary: We study the bias inherent in widely used recommendation strategies such as matrix factorization.
We propose new debiasing strategies for recommender systems.
Our results show that recommender systems are biased and depend on the prior exposure of the user.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What we discover and see online, and consequently our opinions and decisions,
are becoming increasingly affected by automated machine learned predictions.
Similarly, the predictive accuracy of learning machines heavily depends on the
feedback data that we provide them. This mutual influence can lead to
closed-loop interactions that may cause unknown biases which can be exacerbated
after several iterations of machine learning predictions and user feedback.
Machine-caused biases risk leading to undesirable social effects ranging from
polarization to unfairness and filter bubbles.
In this paper, we study the bias inherent in widely used recommendation
strategies such as matrix factorization. Then we model the exposure that is
borne from the interaction between the user and the recommender system and
propose new debiasing strategies for these systems.
Finally, we try to mitigate the recommendation system bias by engineering
solutions for several state of the art recommender system models.
Our results show that recommender systems are biased and depend on the prior
exposure of the user. We also show that the studied bias iteratively decreases
diversity in the output recommendations. Our debiasing method demonstrates the
need for alternative recommendation strategies that take into account the
exposure process in order to reduce bias.
Our research findings show the importance of understanding the nature of and
dealing with bias in machine learning models such as recommender systems that
interact directly with humans, and are thus causing an increasing influence on
human discovery and decision making
Related papers
- Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop [65.23044868332693]
We investigate the impact of source bias on the realm of recommender systems.
We show the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification.
We introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC.
arXiv Detail & Related papers (2024-05-28T09:34:50Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
arXiv Detail & Related papers (2024-04-30T15:20:41Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
arXiv Detail & Related papers (2023-02-21T10:06:01Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
Machine learning applications are becoming increasingly pervasive in our society.
Risk is that they will systematically spread the bias embedded in data.
We propose to analyze biases by introducing a framework for generating synthetic data with specific types of bias and their combinations.
arXiv Detail & Related papers (2022-09-13T11:18:50Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
We propose a systematic and dynamic way to correct user feedback-loop bias in recommendation systems.
Our method includes a deep-learning component to learn each user's dynamic rating history embedding.
We empirically validated the existence of such user feedback-loop bias in real world recommendation systems.
arXiv Detail & Related papers (2021-09-13T15:02:55Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
We show that a popular choice of contrastive loss is equivalent to reducing the exposure bias via inverse propensity weighting.
We further improve upon CLRec and propose Multi-CLRec, for accurate multi-intention aware bias reduction.
Our methods have been successfully deployed in Taobao, where at least four-month online A/B tests and offline analyses demonstrate its substantial improvements.
arXiv Detail & Related papers (2020-05-20T08:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.