Language Models Are An Effective Patient Representation Learning
Technique For Electronic Health Record Data
- URL: http://arxiv.org/abs/2001.05295v2
- Date: Tue, 12 May 2020 20:58:31 GMT
- Title: Language Models Are An Effective Patient Representation Learning
Technique For Electronic Health Record Data
- Authors: Ethan Steinberg, Ken Jung, Jason A. Fries, Conor K. Corbin, Stephen R.
Pfohl, Nigam H. Shah
- Abstract summary: We show that patient representation schemes inspired from techniques in natural language processing can increase the accuracy of clinical prediction models.
Such patient representation schemes enable a 3.5% mean improvement in AUROC on five prediction tasks compared to standard baselines.
- Score: 7.260199064831896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Widespread adoption of electronic health records (EHRs) has fueled the
development of using machine learning to build prediction models for various
clinical outcomes. This process is often constrained by having a relatively
small number of patient records for training the model. We demonstrate that
using patient representation schemes inspired from techniques in natural
language processing can increase the accuracy of clinical prediction models by
transferring information learned from the entire patient population to the task
of training a specific model, where only a subset of the population is
relevant. Such patient representation schemes enable a 3.5% mean improvement in
AUROC on five prediction tasks compared to standard baselines, with the average
improvement rising to 19% when only a small number of patient records are
available for training the clinical prediction model.
Related papers
- Clinical information extraction for Low-resource languages with Few-shot learning using Pre-trained language models and Prompting [12.166472806042592]
Automatic extraction of medical information from clinical documents poses several challenges.
Recent advances in domain-adaptation and prompting methods showed promising results with minimal training data.
We demonstrate that a lightweight, domain-adapted pretrained model, prompted with just 20 shots, outperforms a traditional classification model by 30.5% accuracy.
arXiv Detail & Related papers (2024-03-20T08:01:33Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
We propose a graph-transformer-based network to handle heterogeneous clinical data.
We show the benefit of our pre-training method in a self-supervised and a transfer learning setting.
arXiv Detail & Related papers (2022-07-21T16:59:09Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.