Clinical information extraction for Low-resource languages with Few-shot learning using Pre-trained language models and Prompting
- URL: http://arxiv.org/abs/2403.13369v2
- Date: Tue, 13 Aug 2024 07:35:31 GMT
- Title: Clinical information extraction for Low-resource languages with Few-shot learning using Pre-trained language models and Prompting
- Authors: Phillip Richter-Pechanski, Philipp Wiesenbach, Dominic M. Schwab, Christina Kiriakou, Nicolas Geis, Christoph Dieterich, Anette Frank,
- Abstract summary: Automatic extraction of medical information from clinical documents poses several challenges.
Recent advances in domain-adaptation and prompting methods showed promising results with minimal training data.
We demonstrate that a lightweight, domain-adapted pretrained model, prompted with just 20 shots, outperforms a traditional classification model by 30.5% accuracy.
- Score: 12.166472806042592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic extraction of medical information from clinical documents poses several challenges: high costs of required clinical expertise, limited interpretability of model predictions, restricted computational resources and privacy regulations. Recent advances in domain-adaptation and prompting methods showed promising results with minimal training data using lightweight masked language models, which are suited for well-established interpretability methods. We are first to present a systematic evaluation of these methods in a low-resource setting, by performing multi-class section classification on German doctor's letters. We conduct extensive class-wise evaluations supported by Shapley values, to validate the quality of our small training data set and to ensure the interpretability of model predictions. We demonstrate that a lightweight, domain-adapted pretrained model, prompted with just 20 shots, outperforms a traditional classification model by 30.5% accuracy. Our results serve as a process-oriented guideline for clinical information extraction projects working with low-resource.
Related papers
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Do We Still Need Clinical Language Models? [15.023633270864675]
We show that relatively small specialized clinical models substantially outperform all in-context learning approaches.
We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
arXiv Detail & Related papers (2023-02-16T05:08:34Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - Estimating Redundancy in Clinical Text [6.245180523143739]
Clinicians populate new documents by duplicating existing notes, then updating accordingly.
quantifying information redundancy can play an essential role in evaluating innovations that operate on clinical narratives.
We present and evaluate two strategies to measure redundancy: an information-theoretic approach and a lexicosyntactic and semantic model.
arXiv Detail & Related papers (2021-05-25T11:01:45Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Language Models Are An Effective Patient Representation Learning
Technique For Electronic Health Record Data [7.260199064831896]
We show that patient representation schemes inspired from techniques in natural language processing can increase the accuracy of clinical prediction models.
Such patient representation schemes enable a 3.5% mean improvement in AUROC on five prediction tasks compared to standard baselines.
arXiv Detail & Related papers (2020-01-06T22:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.