論文の概要: Tensor Graph Convolutional Networks for Text Classification
- arxiv url: http://arxiv.org/abs/2001.05313v1
- Date: Sun, 12 Jan 2020 14:28:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 04:30:28.158624
- Title: Tensor Graph Convolutional Networks for Text Classification
- Title(参考訳): テキスト分類のためのテンソルグラフ畳み込みネットワーク
- Authors: Xien Liu, Xinxin You, Xiao Zhang, Ji Wu and Ping Lv
- Abstract要約: グラフベースのニューラルネットワークは、グローバル情報をキャプチャする機能など、いくつかの優れた特性を示している。
本稿では,テキスト分類問題に対するグラフベースニューラルネットワークについて検討する。
- 参考スコア(独自算出の注目度): 17.21683037822181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to sequential learning models, graph-based neural networks exhibit
some excellent properties, such as ability capturing global information. In
this paper, we investigate graph-based neural networks for text classification
problem. A new framework TensorGCN (tensor graph convolutional networks), is
presented for this task. A text graph tensor is firstly constructed to describe
semantic, syntactic, and sequential contextual information. Then, two kinds of
propagation learning perform on the text graph tensor. The first is intra-graph
propagation used for aggregating information from neighborhood nodes in a
single graph. The second is inter-graph propagation used for harmonizing
heterogeneous information between graphs. Extensive experiments are conducted
on benchmark datasets, and the results illustrate the effectiveness of our
proposed framework. Our proposed TensorGCN presents an effective way to
harmonize and integrate heterogeneous information from different kinds of
graphs.
- Abstract(参考訳): 逐次学習モデルと比較して、グラフベースのニューラルネットワークは、グローバル情報をキャプチャする能力など、優れた特性を示している。
本稿では,テキスト分類問題に対するグラフベースニューラルネットワークについて検討する。
この課題に対して、新しいフレームワークTensorGCN(テンソルグラフ畳み込みネットワーク)が提案されている。
テキストグラフテンソルは、まずセマンティック、構文、シーケンシャルな文脈情報を記述するために構築される。
そして、テキストグラフテンソル上で2種類の伝播学習を行う。
1つ目は、単一のグラフ内の近傍ノードからの情報を集約するために使用されるグラフ内伝搬である。
2つ目はグラフ間の異種情報の調和に使用されるグラフ間伝播である。
ベンチマークデータセットを用いて大規模な実験を行い,提案手法の有効性を示した。
提案するTensorGCNは,異なる種類のグラフからの異種情報の調和と統合に有効な方法である。
関連論文リスト
- Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
本研究では,単語グラフニューラルネットワーク(DGoW-GNN)によるテキストの識別手法を提案する。
本稿では,GNNとシーケンスモデルを組み合わせたグラフベースのテキスト分類の新しいモデルを提案する。
提案手法を7つのベンチマークデータセットで評価し,いくつかの最先端ベースラインモデルにより性能が向上していることを確認した。
論文 参考訳(メタデータ) (2024-10-27T15:14:06Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
グラフ分類のためのSAR-GNN(Saliency-Aware Regularized Graph Neural Network)を提案する。
まず,コンパクトなグラフ表現とノード特徴とのセマンティックな類似性を測定することで,グローバルノードの正当性を推定する。
そして、学習した塩分濃度分布を利用して、背骨の近傍集合を規則化する。
論文 参考訳(メタデータ) (2024-01-01T13:44:16Z) - ME-GCN: Multi-dimensional Edge-Embedded Graph Convolutional Networks for
Semi-supervised Text Classification [6.196387205547024]
本稿では,半教師付きテキスト分類のためのME-GCN (Multi-dimensional Edge-enhanced Graph Convolutional Networks)を提案する。
提案モデルでは,8つのベンチマークデータセット間で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-04-10T07:05:12Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
我々は,多層グラフカーネルのファミリーを導入し,グラフ畳み込みニューラルネットワークとカーネルメソッドの新たなリンクを確立する。
提案手法は,グラフをカーネル特徴写像の列として表現することにより,畳み込みカーネルネットワークをグラフ構造データに一般化する。
我々のモデルは、大規模データに対してエンドツーエンドでトレーニングすることもでき、新しいタイプのグラフ畳み込みニューラルネットワークをもたらす。
論文 参考訳(メタデータ) (2020-03-11T09:44:03Z) - Line Hypergraph Convolution Network: Applying Graph Convolution for
Hypergraphs [18.7475578342125]
可変ハイパーエッジサイズを持つハイパーグラフにグラフ畳み込みを適用する新しい手法を提案する。
我々はハイパーグラフの行グラフという古典的な概念を、ハイパーグラフ学習の文献で初めて用いている。
論文 参考訳(メタデータ) (2020-02-09T16:05:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。