論文の概要: Line Graph Neural Networks for Link Prediction
- arxiv url: http://arxiv.org/abs/2010.10046v1
- Date: Tue, 20 Oct 2020 05:54:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:23:22.902469
- Title: Line Graph Neural Networks for Link Prediction
- Title(参考訳): リンク予測のための線グラフニューラルネットワーク
- Authors: Lei Cai and Jundong Li and Jie Wang and Shuiwang Ji
- Abstract要約: 実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
- 参考スコア(独自算出の注目度): 71.00689542259052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the graph link prediction task, which is a classic graph
analytical problem with many real-world applications. With the advances of deep
learning, current link prediction methods commonly compute features from
subgraphs centered at two neighboring nodes and use the features to predict the
label of the link between these two nodes. In this formalism, a link prediction
problem is converted to a graph classification task. In order to extract
fixed-size features for classification, graph pooling layers are necessary in
the deep learning model, thereby incurring information loss. To overcome this
key limitation, we propose to seek a radically different and novel path by
making use of the line graphs in graph theory. In particular, each node in a
line graph corresponds to a unique edge in the original graph. Therefore, link
prediction problems in the original graph can be equivalently solved as a node
classification problem in its corresponding line graph, instead of a graph
classification task. Experimental results on fourteen datasets from different
applications demonstrate that our proposed method consistently outperforms the
state-of-the-art methods, while it has fewer parameters and high training
efficiency.
- Abstract(参考訳): 実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
ディープラーニングの進歩により、現在のリンク予測手法は、2つの隣接ノードを中心とするサブグラフから特徴を計算し、2つのノード間のリンクのラベルを予測する。
この形式化において、リンク予測問題はグラフ分類タスクに変換される。
分類のための固定サイズ特徴を抽出するためには,ディープラーニングモデルではグラフプーリング層が必要であるため,情報損失が生じる。
この限界を克服するために,グラフ理論における線グラフを用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフにおける一意なエッジに対応する。
したがって、元のグラフにおけるリンク予測問題は、グラフ分類タスクではなく、対応する線グラフにおけるノード分類問題として等価に解ける。
異なるアプリケーションから得られた14のデータセットに対する実験結果から,提案手法はパラメータが少なく,訓練効率も高いが,常に最先端の手法より優れていることが示された。
関連論文リスト
- Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Node Classification Meets Link Prediction on Knowledge Graphs [16.37145148171519]
不完全グラフ上のトランスダクティブノード分類の問題とノード特徴を持つグラフ上のリンク予測について検討する。
ノード分類とリンク予測のための各最先端モデルと比較すると,本モデルは非常に強く機能する。
論文 参考訳(メタデータ) (2021-06-14T10:52:52Z) - Anisotropic Graph Convolutional Network for Semi-supervised Learning [7.843067454030999]
グラフ畳み込みネットワークは、高精度な予測結果を達成するのに有用であることが証明された効率的なノード埋め込みを学習する。
これらのネットワークはグラフの過度な平滑化と縮小効果の問題に悩まされており、それはグラフの端に線形ラプラシア流を用いて拡散するからである。
本稿では,ノードからの情報的特徴を捉える非線形関数を導入し,過度なスムーシングを防止し,半教師付きノード分類のための異方性グラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T13:56:03Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
グラフプーリングとして2次プールを提案するが、これは上記の課題を自然に解決する。
グラフニューラルネットワークによる2次プールの直接利用は、実用的な問題を引き起こすことを示す。
本稿では,2次プールに基づく2つの新しいグローバルグラフプーリング手法,すなわちバイリニアマッピングと2次プールを提案する。
論文 参考訳(メタデータ) (2020-07-20T20:52:36Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。