論文の概要: i-flow: High-dimensional Integration and Sampling with Normalizing Flows
- arxiv url: http://arxiv.org/abs/2001.05486v2
- Date: Mon, 17 Aug 2020 18:16:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 06:15:12.840957
- Title: i-flow: High-dimensional Integration and Sampling with Normalizing Flows
- Title(参考訳): i-flow: 正規化フローによる高次元統合とサンプリング
- Authors: Christina Gao, Joshua Isaacson, and Claudius Krause
- Abstract要約: 正規化フローを利用した高次元数値積分を行うピソンパッケージであるコードi-flowを紹介する。
我々は,i-flowを高次元数値積分法と比較し,i-flowが高次元相関積分法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many fields of science, high-dimensional integration is required.
Numerical methods have been developed to evaluate these complex integrals. We
introduce the code i-flow, a python package that performs high-dimensional
numerical integration utilizing normalizing flows. Normalizing flows are
machine-learned, bijective mappings between two distributions. i-flow can also
be used to sample random points according to complicated distributions in high
dimensions. We compare i-flow to other algorithms for high-dimensional
numerical integration and show that i-flow outperforms them for high
dimensional correlated integrals. The i-flow code is publicly available on
gitlab at https://gitlab.com/i-flow/i-flow.
- Abstract(参考訳): 多くの科学分野では、高次元の積分が必要である。
これらの複素積分を数値的に評価する手法が開発されている。
正規化フローを利用した高次元数値積分を行うピソンパッケージであるコードi-flowを紹介する。
正規化フローは2つの分布間の機械学習された単射写像である。
i-フローは高次元の複雑な分布に従ってランダムな点をサンプリングするのにも用いられる。
我々は,i-flowを高次元数値積分法と比較し,i-flowが高次元相関積分法よりも優れていることを示す。
i-flowコードはgitlabのhttps://gitlab.com/i-flow/i-flowで公開されている。
関連論文リスト
- WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。
最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。
LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。
論文 参考訳(メタデータ) (2024-11-08T09:58:02Z) - PaddingFlow: Improving Normalizing Flows with Padding-Dimensional Noise [4.762593660623934]
パディングフロー(PaddingFlow)は,パディング次元雑音による正規化フローを改善する新しいデクエント化法である。
非条件密度推定の主ベンチマークで本手法の有効性を検証した。
この結果から,PaddingFlowはすべての実験において優れた性能を発揮できることがわかった。
論文 参考訳(メタデータ) (2024-03-13T03:28:39Z) - normflows: A PyTorch Package for Normalizing Flows [7.450471038139951]
フローを正規化するためのPythonパッケージである normflows を提示する。
ベースディストリビューション、フロー層、ニューラルネットワークのスイートから正規化フローモデルを構築することができる。
パッケージはip経由で簡単にインストールでき、コードはGitHubで公開されている。
論文 参考訳(メタデータ) (2023-01-26T14:58:37Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
本稿では,アクションのシーケンスからオブジェクトを生成するためのポリシーを学習する問題について述べる。
本稿では,生成過程をフローネットワークとして見たGFlowNetを提案する。
提案した目的の任意のグローバルな最小限が、所望の分布から標本化する方針を導出することを証明する。
論文 参考訳(メタデータ) (2021-06-08T14:21:10Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - Self Normalizing Flows [65.73510214694987]
本稿では,各層における学習された近似逆数により,勾配の高価な項を置き換えることで,フローの正規化を訓練するための柔軟なフレームワークを提案する。
これにより、各レイヤの正確な更新の計算複雑性が$mathcalO(D3)$から$mathcalO(D2)$に削減される。
実験により,これらのモデルは非常に安定であり,正確な勾配値と類似したデータ可能性値に最適化可能であることが示された。
論文 参考訳(メタデータ) (2020-11-14T09:51:51Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal
Transport [8.468007443062751]
正規化フローは任意の確率分布と標準正規分布の間の可逆写像である。
OT-Flowは、より広範なCNFの使用を制限する2つの重要な計算課題に取り組む。
5つの高次元密度推定および生成モデリングタスクにおいて、OT-Flowは最先端CNFと競合して動作する。
論文 参考訳(メタデータ) (2020-05-29T22:31:10Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。