論文の概要: VQ-Flows: Vector Quantized Local Normalizing Flows
- arxiv url: http://arxiv.org/abs/2203.11556v1
- Date: Tue, 22 Mar 2022 09:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 12:44:25.725225
- Title: VQ-Flows: Vector Quantized Local Normalizing Flows
- Title(参考訳): VQ-Flows:ベクトル量子化局所正規化フロー
- Authors: Sahil Sidheekh, Chris B. Dock, Tushar Jain, Radu Balan, Maneesh K.
Singh
- Abstract要約: データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
- 参考スコア(独自算出の注目度): 2.7998963147546148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows provide an elegant approach to generative modeling that
allows for efficient sampling and exact density evaluation of unknown data
distributions. However, current techniques have significant limitations in
their expressivity when the data distribution is supported on a low-dimensional
manifold or has a non-trivial topology. We introduce a novel statistical
framework for learning a mixture of local normalizing flows as "chart maps"
over the data manifold. Our framework augments the expressivity of recent
approaches while preserving the signature property of normalizing flows, that
they admit exact density evaluation. We learn a suitable atlas of charts for
the data manifold via a vector quantized auto-encoder (VQ-AE) and the
distributions over them using a conditional flow. We validate experimentally
that our probabilistic framework enables existing approaches to better model
data distributions over complex manifolds.
- Abstract(参考訳): フローの正規化は、未知のデータ分布の効率的なサンプリングと正確な密度評価を可能にする生成モデリングへのエレガントなアプローチを提供する。
しかし、現在の手法は、低次元多様体上でのデータ分布がサポートされたり、非自明な位相を持つ場合、その表現性に大きな制限がある。
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
ベクトル量子化オートエンコーダ(vq-ae)を介してデータ多様体に適したチャートのアトラスと条件付きフローを用いてそれらの上の分布を学習する。
我々は,我々の確率的フレームワークが複素多様体上のデータ分布をモデル化するための既存のアプローチを可能にすることを実験的に検証した。
関連論文リスト
- Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows [0.0]
正規化フローは、単純な基底分布を複素対象分布に変換することにより、トラクタブル密度推定を提供する。
この問題を治療するための最近の試みは、正確な密度推定という、フローを正規化するという中心的な利益を損なう幾何学的な合併症を導入している。
我々は、訓練可能な共形埋め込みで標準流れを構成することが、多様体が支持するデータをモデル化する最も自然な方法であると主張する。
論文 参考訳(メタデータ) (2021-06-09T18:00:00Z) - Generative Flows with Invertible Attentions [135.23766216657745]
生成フローモデルに対する2種類の非可逆的注意機構を導入する。
フロー特徴写像の2分割毎に注意重みと入力表現を学習するために,分割に基づく注意機構を利用する。
提案手法は, トラクタブルジャコビアン行列を用いた非可逆アテンションモジュールをフローベースモデルの任意の位置にシームレスに統合する。
論文 参考訳(メタデータ) (2021-06-07T20:43:04Z) - SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds [15.476426879806134]
フローベース生成モデルは、同じ次元の2つのランダム変数間の可逆変換からなる。
本論文では,多様体上の正規化フローを学習するための確率的フレームワークであるSoftFlowを提案する。
実験により,SoftFlowは多様体データの固有構造を捕捉し,高品質なサンプルを生成することができることを示した。
提案手法を3次元点雲に適用することにより,フローベースモデルにおける細い構造形成の難しさを軽減する。
論文 参考訳(メタデータ) (2020-06-08T13:56:07Z) - Flows for simultaneous manifold learning and density estimation [12.451050883955071]
多様体学習フロー(M-flow)は、多様体構造を持つデータセットをより忠実に表現する。
M-フローはデータ多様体を学習し、周囲のデータ空間の標準フローよりも優れた推論を可能にする。
論文 参考訳(メタデータ) (2020-03-31T02:07:48Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。