論文の概要: Outlier Detection Ensemble with Embedded Feature Selection
- arxiv url: http://arxiv.org/abs/2001.05492v1
- Date: Wed, 15 Jan 2020 13:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 05:57:43.165633
- Title: Outlier Detection Ensemble with Embedded Feature Selection
- Title(参考訳): 埋め込み特徴選択による異常検出アンサンブル
- Authors: Li Cheng, Yijie Wang, Xinwang Liu, Bin Li
- Abstract要約: 組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
- 参考スコア(独自算出の注目度): 42.8338013000469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection places an important role in improving the performance of
outlier detection, especially for noisy data. Existing methods usually perform
feature selection and outlier scoring separately, which would select feature
subsets that may not optimally serve for outlier detection, leading to
unsatisfying performance. In this paper, we propose an outlier detection
ensemble framework with embedded feature selection (ODEFS), to address this
issue. Specifically, for each random sub-sampling based learning component,
ODEFS unifies feature selection and outlier detection into a pairwise ranking
formulation to learn feature subsets that are tailored for the outlier
detection method. Moreover, we adopt the thresholded self-paced learning to
simultaneously optimize feature selection and example selection, which is
helpful to improve the reliability of the training set. After that, we design
an alternate algorithm with proved convergence to solve the resultant
optimization problem. In addition, we analyze the generalization error bound of
the proposed framework, which provides theoretical guarantee on the method and
insightful practical guidance. Comprehensive experimental results on 12
real-world datasets from diverse domains validate the superiority of the
proposed ODEFS.
- Abstract(参考訳): 特徴選択は、特にノイズの多いデータに対して、外乱検出の性能を改善する上で重要な役割を果たす。
既存のメソッドは通常、特徴選択と外れ値スコアリングを別々に行い、最適に外れ値検出に役立たない機能サブセットを選択し、不満足なパフォーマンスをもたらす。
本稿では,この問題に対処する組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
具体的には、各ランダムサブサンプリングベースの学習コンポーネントに対して、odefsは特徴選択と外れ値検出をペアワイズランキング定式化に統一し、外れ値検出法用に調整された特徴サブセットを学習する。
さらに,訓練セットの信頼性向上に役立つ特徴選択と例選択を同時に最適化するために,しきい値付き自己ペース学習を採用する。
その後,結果最適化問題を解くために,収束性が証明された代替アルゴリズムを設計する。
さらに,提案フレームワークの一般化誤差を解析し,提案手法の理論的保証と洞察に富んだ実践的ガイダンスを提供する。
提案したODEFSの優位性を検証するため, 多様な領域の12の実世界のデータセットに関する総合的な実験結果を得た。
関連論文リスト
- Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
本稿では,異なるクラス間で示される相違点に基づいて識別的特徴を抽出する新しいフィルタ特徴選択手法であるContrastFSを提案する。
提案手法の有効性と有効性について検証し,提案手法が無視可能な計算で良好に動作することを示す。
論文 参考訳(メタデータ) (2024-01-15T05:32:35Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Bilevel Optimization for Feature Selection in the Data-Driven Newsvendor
Problem [8.281391209717105]
本稿では、意思決定者が過去のデータにアクセス可能な機能ベースのニュースベンダー問題について検討する。
そこで本研究では,スパースモデル,説明可能なモデル,およびアウト・オブ・サンプル性能の改善を目的とした特徴選択について検討する。
本稿では,2レベルプログラムに対する混合整数線形プログラムの修正について述べる。
論文 参考訳(メタデータ) (2022-09-12T08:52:26Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
典型的な機械学習環境では、すべてのテストインスタンスの予測は、モデルトレーニング中に発見された機能の共通サブセットに基づいている。
それぞれのテストインスタンスに対して個別に評価する最適な特徴を順次選択し、分類精度に関して更なる改善が得られないことを判断すると、選択プロセスが終了して予測を行う新しい手法を提案する。
提案手法の有効性, 一般化性, 拡張性について, 多様なアプリケーション領域の様々な実世界のデータセットで説明する。
論文 参考訳(メタデータ) (2021-06-08T20:20:36Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。