論文の概要: Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection
- arxiv url: http://arxiv.org/abs/2010.05454v3
- Date: Thu, 7 Apr 2022 03:15:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 06:08:40.868206
- Title: Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection
- Title(参考訳): 教師なし特徴選択のための結合適応グラフと構造空間正規化
- Authors: Zhenzhen Sun and Yuanlong Yu
- Abstract要約: 本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
- 参考スコア(独自算出の注目度): 6.41804410246642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection is an important data preprocessing in data mining and
machine learning which can be used to reduce the feature dimension without
deteriorating model's performance. Since obtaining annotated data is laborious
or even infeasible in many cases, unsupervised feature selection is more
practical in reality. Though lots of methods for unsupervised feature selection
have been proposed, these methods select features independently, thus it is no
guarantee that the group of selected features is optimal. What's more, the
number of selected features must be tuned carefully to obtain a satisfactory
result. To tackle these problems, we propose a joint adaptive graph and
structured sparsity regularization unsupervised feature selection (JASFS)
method in this paper, in which a $l_{2,0}$-norm regularization term with
respect to transformation matrix is imposed in the manifold learning for
feature selection, and a graph regularization term is incorporated into the
learning model to learn the local geometric structure of data adaptively. An
efficient and simple iterative algorithm is designed to solve the proposed
optimization problem with the analysis of computational complexity. After
optimized, a subset of optimal features will be selected in group, and the
number of selected features will be determined automatically. Experimental
results on eight benchmarks demonstrate the effectiveness and efficiency of the
proposed method compared with several state-of-the-art approaches.
- Abstract(参考訳): 特徴の選択は、データマイニングや機械学習において重要なデータ前処理であり、モデルの性能を損なうことなく特徴の次元を減らすために使用できる。
多くの場合、注釈付きデータの取得は手間がかかるか、あるいは実現不可能なため、教師なし特徴の選択は現実的にはより実用的である。
教師なし特徴選択のための多くの手法が提案されているが、これらの手法は独立して特徴を選択するため、選択された特徴群が最適である保証はない。
さらに、満足できる結果を得るためには、選択した機能の数を慎重に調整する必要があります。
そこで本稿では,特徴選択のための多様体学習において,変換行列に対する$l_{2,0}$-norm正規化項が課せられ,グラフ正規化項が学習モデルに組み込まれ,データの局所的幾何学構造を適応的に学習する。
計算複雑性の解析により提案した最適化問題の解法として,効率的かつ簡便な反復アルゴリズムを設計する。
最適化後、最適な特徴のサブセットがグループで選択され、選択された特徴の数が自動的に決定される。
8つのベンチマーク実験の結果から,提案手法の有効性と有効性が得られた。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - Bilevel Optimization for Feature Selection in the Data-Driven Newsvendor
Problem [8.281391209717105]
本稿では、意思決定者が過去のデータにアクセス可能な機能ベースのニュースベンダー問題について検討する。
そこで本研究では,スパースモデル,説明可能なモデル,およびアウト・オブ・サンプル性能の改善を目的とした特徴選択について検討する。
本稿では,2レベルプログラムに対する混合整数線形プログラムの修正について述べる。
論文 参考訳(メタデータ) (2022-09-12T08:52:26Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
モデル構築における最適特徴の選択に関する基礎的問題について検討する。
この問題は、greedyアルゴリズムの変種を使用しても、大規模なデータセットで計算的に困難である。
適応クエリモデルは,最近提案された非モジュラー関数に対する直交整合探索のより高速なパラダイムに拡張する。
提案アルゴリズムは、適応型クエリモデルにおいて指数関数的に高速な並列実行を実現する。
論文 参考訳(メタデータ) (2022-02-28T12:26:47Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Low-rank Dictionary Learning for Unsupervised Feature Selection [11.634317251468968]
低ランク表現に辞書学習のアイデアを適用することで、教師なしの新たな特徴選択手法を導入する。
非教師付き特徴選択のための統一目的関数は、$ell_2,1$-norm正規化によってスパースな方法で提案される。
実験の結果,提案手法は最先端のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-06-21T13:39:10Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Feature Selection Using Reinforcement Learning [0.0]
特定の関心の予測因子を特徴付けるために使用できる変数や特徴の空間は指数関数的に増大し続けている。
モデルのバイアスを損なうことなく分散を最小化する最も特徴的な特徴を特定することは、マシンラーニングモデルのトレーニングを成功させる上で非常に重要です。
論文 参考訳(メタデータ) (2021-01-23T09:24:37Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
非相関的かつ識別的特徴の選択は、教師なしの機能選択の重要な問題である。
非相関制約と $ell_2,1$-norm 正規化によって課される新しい一般化回帰モデルを提案する。
それは同時に同じ近所に属するこれらのデータ ポイントの分散を減らすこと無相関および差別的な特徴を選ぶことができます。
論文 参考訳(メタデータ) (2020-12-27T09:07:26Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。