Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space
Multi-Person Video Motion Capture in the Wild
- URL: http://arxiv.org/abs/2001.05613v2
- Date: Wed, 14 Oct 2020 04:08:05 GMT
- Title: Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space
Multi-Person Video Motion Capture in the Wild
- Authors: Takuya Ohashi, Yosuke Ikegami, Yoshihiko Nakamura
- Abstract summary: We propose a markerless motion capture method with accuracy and smoothness from multiple cameras.
The proposed method predicts each persons 3D pose and determines bounding box of multi-camera images.
We evaluated the proposed method using various datasets and a real sports field.
- Score: 3.0015034534260665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although many studies have investigated markerless motion capture, the
technology has not been applied to real sports or concerts. In this paper, we
propose a markerless motion capture method with spatiotemporal accuracy and
smoothness from multiple cameras in wide-space and multi-person environments.
The proposed method predicts each person's 3D pose and determines the bounding
box of multi-camera images small enough. This prediction and spatiotemporal
filtering based on human skeletal model enables 3D reconstruction of the person
and demonstrates high-accuracy. The accurate 3D reconstruction is then used to
predict the bounding box of each camera image in the next frame. This is
feedback from the 3D motion to 2D pose, and provides a synergetic effect on the
overall performance of video motion capture. We evaluated the proposed method
using various datasets and a real sports field. The experimental results
demonstrate that the mean per joint position error (MPJPE) is 31.5 mm and the
percentage of correct parts (PCP) is 99.5% for five people dynamically moving
while satisfying the range of motion (RoM). Video demonstration, datasets, and
additional materials are posted on our project page.
Related papers
- DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - Cinematic Behavior Transfer via NeRF-based Differentiable Filming [63.1622492808519]
Existing SLAM methods face limitations in dynamic scenes and human pose estimation often focuses on 2D projections.
We first introduce a reverse filming behavior estimation technique.
We then introduce a cinematic transfer pipeline that is able to transfer various shot types to a new 2D video or a 3D virtual environment.
arXiv Detail & Related papers (2023-11-29T15:56:58Z) - MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion [57.90404618420159]
We introduce Multi-view Ancestral Sampling (MAS), a method for 3D motion generation.
MAS works by simultaneously denoising multiple 2D motion sequences representing different views of the same 3D motion.
We demonstrate MAS on 2D pose data acquired from videos depicting professional basketball maneuvers.
arXiv Detail & Related papers (2023-10-23T09:05:18Z) - Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial
Sports Field Registration [0.0]
We combine advances in 2D human pose estimation and camera calibration via partial sports field registration to demonstrate an avenue for collecting valid large-scale kinematic datasets.
We generate a synthetic dataset of more than 10k images in Unreal Engine 5 with different viewpoints, running styles, and body types.
arXiv Detail & Related papers (2023-04-10T07:41:44Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
We consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera.
We leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks.
In particular, we estimate the scene depth and unique person scale from normalized disparity predictions using the 2D body joints and joint angles.
arXiv Detail & Related papers (2023-01-12T18:01:28Z) - 3D Human Pose Estimation in Multi-View Operating Room Videos Using
Differentiable Camera Projections [2.486571221735935]
We propose to directly optimise for localisation in 3D by training 2D CNNs end-to-end based on a 3D loss.
Using videos from the MVOR dataset, we show that this end-to-end approach outperforms optimisation in 2D space.
arXiv Detail & Related papers (2022-10-21T09:00:02Z) - Temporal View Synthesis of Dynamic Scenes through 3D Object Motion
Estimation with Multi-Plane Images [8.185918509343816]
We study the problem of temporal view synthesis (TVS), where the goal is to predict the next frames of a video.
In this work, we consider the TVS of dynamic scenes in which both the user and objects are moving.
We predict the motion of objects by isolating and estimating the 3D object motion in the past frames and then extrapolating it.
arXiv Detail & Related papers (2022-08-19T17:40:13Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video.
Experiments on benchmark datasets demonstrate that our method outperforms previous methods for fast moving object deblurring and 3D reconstruction.
arXiv Detail & Related papers (2021-11-29T11:25:14Z) - Consistent Depth of Moving Objects in Video [52.72092264848864]
We present a method to estimate depth of a dynamic scene, containing arbitrary moving objects, from an ordinary video captured with a moving camera.
We formulate this objective in a new test-time training framework where a depth-prediction CNN is trained in tandem with an auxiliary scene-flow prediction over the entire input video.
We demonstrate accurate and temporally coherent results on a variety of challenging videos containing diverse moving objects (pets, people, cars) as well as camera motion.
arXiv Detail & Related papers (2021-08-02T20:53:18Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
We propose a temporal regression network with a gated convolution module to transform 2D joints to 3D.
A simple yet effective localization approach is also conducted to transform the normalized pose to the global trajectory.
Our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods.
arXiv Detail & Related papers (2020-10-31T04:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.