Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
Networks
- URL: http://arxiv.org/abs/2001.05992v1
- Date: Thu, 16 Jan 2020 18:48:34 GMT
- Title: Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
Networks
- Authors: Wei Hu, Lechao Xiao, Jeffrey Pennington
- Abstract summary: We show that the width needed for efficient convergence to a global minimum is independent of the depth.
Our results suggest an explanation for the recent empirical successes found by initializing very deep non-linear networks according to the principle of dynamical isometry.
- Score: 39.856439772974454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The selection of initial parameter values for gradient-based optimization of
deep neural networks is one of the most impactful hyperparameter choices in
deep learning systems, affecting both convergence times and model performance.
Yet despite significant empirical and theoretical analysis, relatively little
has been proved about the concrete effects of different initialization schemes.
In this work, we analyze the effect of initialization in deep linear networks,
and provide for the first time a rigorous proof that drawing the initial
weights from the orthogonal group speeds up convergence relative to the
standard Gaussian initialization with iid weights. We show that for deep
networks, the width needed for efficient convergence to a global minimum with
orthogonal initializations is independent of the depth, whereas the width
needed for efficient convergence with Gaussian initializations scales linearly
in the depth. Our results demonstrate how the benefits of a good initialization
can persist throughout learning, suggesting an explanation for the recent
empirical successes found by initializing very deep non-linear networks
according to the principle of dynamical isometry.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Robust Learning of Parsimonious Deep Neural Networks [0.0]
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network.
We derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection.
We evaluate the proposed algorithm on the MNIST data set and commonly used fully connected and convolutional LeNet architectures.
arXiv Detail & Related papers (2022-05-10T03:38:55Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
We present a novel analysis of single-hidden-layer linear networks trained under gradient flow.
We show that the squared loss converges exponentially to its optimum.
We derive a novel non-asymptotic upper-bound on the distance between the trained network and the min-norm solution.
arXiv Detail & Related papers (2021-05-13T15:13:51Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.