Fairness Measures for Regression via Probabilistic Classification
- URL: http://arxiv.org/abs/2001.06089v2
- Date: Thu, 5 Mar 2020 03:46:01 GMT
- Title: Fairness Measures for Regression via Probabilistic Classification
- Authors: Daniel Steinberg, Alistair Reid and Simon O'Callaghan
- Abstract summary: Algorithmic fairness involves expressing notions such as equity, or reasonable treatment, as quantifiable measures that a machine learning algorithm can optimise.
This is in part because classification fairness measures are easily computed by comparing the rates of outcomes, leading to behaviours such as ensuring the same fraction of eligible men are selected as eligible women.
But such measures are computationally difficult to generalise to the continuous regression setting for problems such as pricing, or allocating payments.
For the regression setting we introduce tractable approximations of the independence, separation and sufficiency criteria by observing that they factorise as ratios of different conditional probabilities of the protected attributes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic fairness involves expressing notions such as equity, or
reasonable treatment, as quantifiable measures that a machine learning
algorithm can optimise. Most work in the literature to date has focused on
classification problems where the prediction is categorical, such as accepting
or rejecting a loan application. This is in part because classification
fairness measures are easily computed by comparing the rates of outcomes,
leading to behaviours such as ensuring that the same fraction of eligible men
are selected as eligible women. But such measures are computationally difficult
to generalise to the continuous regression setting for problems such as
pricing, or allocating payments. The difficulty arises from estimating
conditional densities (such as the probability density that a system will
over-charge by a certain amount). For the regression setting we introduce
tractable approximations of the independence, separation and sufficiency
criteria by observing that they factorise as ratios of different conditional
probabilities of the protected attributes. We introduce and train machine
learning classifiers, distinct from the predictor, as a mechanism to estimate
these probabilities from the data. This naturally leads to model agnostic,
tractable approximations of the criteria, which we explore experimentally.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Arbitrariness and Social Prediction: The Confounding Role of Variance in
Fair Classification [31.392067805022414]
Variance in predictions across different trained models is a significant, under-explored source of error in fair binary classification.
In practice, the variance on some data examples is so large that decisions can be effectively arbitrary.
We develop an ensembling algorithm that abstains from classification when a prediction would be arbitrary.
arXiv Detail & Related papers (2023-01-27T06:52:04Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
We propose a first algorithm to address both identifiable and unidentifiable queries.
We prove that, in spite of the missingness induced by the selection bias, the likelihood of the available data is unimodal.
arXiv Detail & Related papers (2022-07-26T10:33:10Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
In some cases, the performance of minority group can decrease while we reduce the coverage.
We show that such an unwanted behavior can be avoided if we can construct features satisfying the sufficiency criterion.
arXiv Detail & Related papers (2021-10-28T19:05:12Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
We propose a method for combining probabilistic outputs of classifiers to make a single consensus class prediction.
Our proposed method works well in situations where accuracy is the performance metric.
It does not output calibrated probabilities, so it is not suitable in situations where such probabilities are required for further processing.
arXiv Detail & Related papers (2020-09-01T16:53:29Z) - Classifier uncertainty: evidence, potential impact, and probabilistic
treatment [0.0]
We present an approach to quantify the uncertainty of classification performance metrics based on a probability model of the confusion matrix.
We show that uncertainties can be surprisingly large and limit performance evaluation.
arXiv Detail & Related papers (2020-06-19T12:49:19Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
This paper introduces fast approximations of the independence, separation and sufficiency group fairness criteria for regression models.
It uses such approximations as regularisers to enforce fairness within a regularised risk minimisation framework.
Experiments in real-world datasets indicate that in spite of its superior computational efficiency our algorithm still displays state-of-the-art accuracy/fairness tradeoffs.
arXiv Detail & Related papers (2020-02-14T08:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.