Accuracy vs. Accuracy: Computational Tradeoffs Between Classification Rates and Utility
- URL: http://arxiv.org/abs/2505.16494v1
- Date: Thu, 22 May 2025 10:26:30 GMT
- Title: Accuracy vs. Accuracy: Computational Tradeoffs Between Classification Rates and Utility
- Authors: Noga Amit, Omer Reingold, Guy N. Rothblum,
- Abstract summary: We revisit the foundations of fairness and its interplay with utility and efficiency in settings where the training data contain richer labels.<n>We propose algorithms that achieve stronger notions of evidence-based fairness than are possible in standard supervised learning.
- Score: 6.99674326582747
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We revisit the foundations of fairness and its interplay with utility and efficiency in settings where the training data contain richer labels, such as individual types, rankings, or risk estimates, rather than just binary outcomes. In this context, we propose algorithms that achieve stronger notions of evidence-based fairness than are possible in standard supervised learning. Our methods support classification and ranking techniques that preserve accurate subpopulation classification rates, as suggested by the underlying data distributions, across a broad class of classification rules and downstream applications. Furthermore, our predictors enable loss minimization, whether aimed at maximizing utility or in the service of fair treatment. Complementing our algorithmic contributions, we present impossibility results demonstrating that simultaneously achieving accurate classification rates and optimal loss minimization is, in some cases, computationally infeasible. Unlike prior impossibility results, our notions are not inherently in conflict and are simultaneously satisfied by the Bayes-optimal predictor. Furthermore, we show that each notion can be satisfied individually via efficient learning. Our separation thus stems from the computational hardness of learning a sufficiently good approximation of the Bayes-optimal predictor. These computational impossibilities present a choice between two natural and attainable notions of accuracy that could both be motivated by fairness.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Uncertainty-Aware Fairness-Adaptive Classification Trees [0.0]
This paper introduces a new classification tree algorithm using a novel splitting criterion that incorporates fairness adjustments into the tree-building process.
We show that our method effectively reduces discriminatory predictions compared to traditional classification trees, without significant loss in overall accuracy.
arXiv Detail & Related papers (2024-10-08T08:42:12Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
We develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints.
We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear.
Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs.
arXiv Detail & Related papers (2024-02-05T08:59:47Z) - Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy [7.215903549622416]
We propose a mixed integer optimization framework for learning optimal classification trees.
We benchmark our method against state-of-the-art approaches for fair classification on popular datasets.
Our method consistently finds decisions with almost full parity, while other methods rarely do.
arXiv Detail & Related papers (2022-01-24T19:47:10Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Pairwise Fairness for Ordinal Regression [22.838858781036574]
We adapt two fairness notions previously considered in fair ranking and propose a strategy for training a predictor that is approximately fair according to either notion.
Our predictor consists of a threshold model, composed of a scoring function and a set of thresholds.
We show that our strategy allows us to effectively explore the accuracy-vs-fairness trade-off and that it often compares favorably to "unfair" state-of-the-art methods for ordinal regression.
arXiv Detail & Related papers (2021-05-07T10:33:42Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
We develop a framework for fair semi-supervised learning, which is formulated as an optimization problem.
We theoretically analyze the source of discrimination in semi-supervised learning via bias, variance and noise decomposition.
Our method is able to achieve fair semi-supervised learning, and reach a better trade-off between accuracy and fairness than fair supervised learning.
arXiv Detail & Related papers (2020-09-14T04:25:59Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
In the application of machine learning to real-life decision-making systems, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness.
The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss.
In this paper, we introduce a new approach to handle fairness by formulating a multi-objective optimization problem.
arXiv Detail & Related papers (2020-08-03T18:51:24Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.