Microwave--Optical entanglement in a Strongly Coupled
Electro-Optomechanical System
- URL: http://arxiv.org/abs/2001.06107v1
- Date: Thu, 16 Jan 2020 23:01:41 GMT
- Title: Microwave--Optical entanglement in a Strongly Coupled
Electro-Optomechanical System
- Authors: Changchun Zhong, Xu Han, Hong X. Tang, Liang Jiang
- Abstract summary: We study the microwave and optical entanglement generation based on a generic cavity electro-optomechanical system in the strong coupling regime.
We show that entanglement can be straightforwardly encoded in the frequency-bin degree of freedom and propose a feasible experiment to verify entangled photon pairs.
- Score: 8.704659378130652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum transduction between microwave and optics can be realized by quantum
teleportation if given reliable microwave-optical entanglement, namely
entanglement-based quantum transduction. To realize this protocol, an entangled
source with high-fidelity between the two frequencies is necessary. In this
paper, we study the microwave and optical entanglement generation based on a
generic cavity electro-optomechanical system in the strong coupling regime.
Splittings are shown in the microwave and optical output spectra and the
frequency entanglement between the two modes is quantified. We show that
entanglement can be straightforwardly encoded in the frequency-bin degree of
freedom and propose a feasible experiment to verify entangled photon pairs. The
experimental implementation is systematically analyzed, and the preferable
parameter regime for entanglement verification is identified. An inequality is
given as a criterion for good entanglement verification with analysis of
practical imperfections.
Related papers
- Microwave-to-optics conversion using magnetostatic modes and a tunable
optical cavity [7.043386765149337]
Quantum computing, quantum communication and quantum networks rely on hybrid quantum systems operating in different frequency ranges.
A quantum interface is demanded, which serves as a bridge to establish information linkage between different quantum systems operating at distinct frequencies.
Here, we realize the magnon-based microwave-light interface by adopting an optical cavity with adjustable free spectrum range.
arXiv Detail & Related papers (2024-03-01T08:17:18Z) - Quantum entanglement between optical and microwave photonic qubits [1.817633657275965]
Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
arXiv Detail & Related papers (2023-12-21T04:02:48Z) - Heralding entangled optical photons from a microwave quantum processor [0.0]
We propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits.
We use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor.
Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing.
arXiv Detail & Related papers (2023-08-27T18:30:33Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - A squeezed quantum microcomb on a chip [0.0]
We demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip.
A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs.
arXiv Detail & Related papers (2021-03-04T23:13:02Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.