Quantum entanglement between optical and microwave photonic qubits
- URL: http://arxiv.org/abs/2312.13559v2
- Date: Fri, 22 Dec 2023 08:44:40 GMT
- Title: Quantum entanglement between optical and microwave photonic qubits
- Authors: Srujan Meesala, David Lake, Steven Wood, Piero Chiappina, Changchun
Zhong, Andrew D. Beyer, Matthew D. Shaw, Liang Jiang, and Oskar Painter
- Abstract summary: Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
- Score: 1.817633657275965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is an extraordinary feature of quantum mechanics. Sources of
entangled optical photons were essential to test the foundations of quantum
physics through violations of Bell's inequalities. More recently, entangled
many-body states have been realized via strong non-linear interactions in
microwave circuits with superconducting qubits. Here we demonstrate a
chip-scale source of entangled optical and microwave photonic qubits. Our
device platform integrates a piezo-optomechanical transducer with a
superconducting resonator which is robust under optical illumination. We drive
a photon-pair generation process and employ a dual-rail encoding intrinsic to
our system to prepare entangled states of microwave and optical photons. We
place a lower bound on the fidelity of the entangled state by measuring
microwave and optical photons in two orthogonal bases. This entanglement source
can directly interface telecom wavelength time-bin qubits and GHz frequency
superconducting qubits, two well-established platforms for quantum
communication and computation, respectively.
Related papers
- Heralding entangled optical photons from a microwave quantum processor [0.0]
We propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits.
We use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor.
Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing.
arXiv Detail & Related papers (2023-08-27T18:30:33Z) - Non-classical microwave-optical photon pair generation with a chip-scale
transducer [2.22842486426261]
We observe non-classical correlations between photons in an optical link and a superconducting electrical circuit.
The non-classical nature of the emitted light is verified by observing anti-bunching in the microwave state.
Such a transducer can be readily connected to a superconducting quantum processor, and serve as a key building block for optical quantum networks of microwave frequency qubits.
arXiv Detail & Related papers (2023-03-30T19:54:24Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Optically heralded microwave photons [1.606071974243323]
A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
arXiv Detail & Related papers (2022-10-19T17:27:25Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum transduction of optical photons from a superconducting qubit [0.0]
We demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon.
With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks.
arXiv Detail & Related papers (2020-04-09T22:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.