Heralding entangled optical photons from a microwave quantum processor
- URL: http://arxiv.org/abs/2308.14173v2
- Date: Tue, 7 May 2024 15:28:49 GMT
- Title: Heralding entangled optical photons from a microwave quantum processor
- Authors: Trond Hjerpekjøn Haug, Anton Frisk Kockum, Raphaël Van Laer,
- Abstract summary: We propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits.
We use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor.
Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploiting the strengths of different quantum hardware components may enhance the capabilities of emerging quantum processors. Here, we propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits, to produce entangled optical resource states. Contrary to previous proposals on optically distributing entanglement between superconducting microwave processors, we use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor. Moreover, the microwave quantum processor allows us to deterministically entangle microwave-optical Bell pairs into larger cluster states, from which entangled optical photons can be extracted through microwave measurements. Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing using imperfect microwave-optics transducers. We expect that improved isolation of the superconducting processor from stray optical fields will allow the scheme to be demonstrated using currently available hardware.
Related papers
- Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps [0.0]
Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
arXiv Detail & Related papers (2024-09-09T23:31:15Z) - Quantum entanglement between optical and microwave photonic qubits [1.817633657275965]
Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
arXiv Detail & Related papers (2023-12-21T04:02:48Z) - Non-classical microwave-optical photon pair generation with a chip-scale
transducer [2.22842486426261]
We observe non-classical correlations between photons in an optical link and a superconducting electrical circuit.
The non-classical nature of the emitted light is verified by observing anti-bunching in the microwave state.
Such a transducer can be readily connected to a superconducting quantum processor, and serve as a key building block for optical quantum networks of microwave frequency qubits.
arXiv Detail & Related papers (2023-03-30T19:54:24Z) - Optically heralded microwave photons [1.606071974243323]
A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
arXiv Detail & Related papers (2022-10-19T17:27:25Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum transduction with microwave and optical entanglement [9.78316480470736]
Microwave-optical entanglement can be generated using various platforms.
In this paper, we make the teleportation induced conversion scheme more concrete in the framework of quantum channel theory.
arXiv Detail & Related papers (2022-02-09T17:51:29Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.