Learning Stable Deep Dynamics Models
- URL: http://arxiv.org/abs/2001.06116v1
- Date: Fri, 17 Jan 2020 00:04:45 GMT
- Title: Learning Stable Deep Dynamics Models
- Authors: Gaurav Manek, J. Zico Kolter
- Abstract summary: We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
- Score: 91.90131512825504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep networks are commonly used to model dynamical systems, predicting how
the state of a system will evolve over time (either autonomously or in response
to control inputs). Despite the predictive power of these systems, it has been
difficult to make formal claims about the basic properties of the learned
systems. In this paper, we propose an approach for learning dynamical systems
that are guaranteed to be stable over the entire state space. The approach
works by jointly learning a dynamics model and Lyapunov function that
guarantees non-expansiveness of the dynamics under the learned Lyapunov
function. We show that such learning systems are able to model simple dynamical
systems and can be combined with additional deep generative models to learn
complex dynamics, such as video textures, in a fully end-to-end fashion.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Learning spatio-temporal patterns with Neural Cellular Automata [0.0]
We train NCA to learn complex dynamics from time series of images and PDE trajectories.
We extend NCA to capture both transient and stable structures within the same system.
Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework.
arXiv Detail & Related papers (2023-10-23T11:16:32Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which can describe most multi-physics systems.
We propose Physically Consistent NODEs (PC-NODEs) to learn parameters from data.
We demonstrate the effectiveness of the proposed method by learning the thermodynamics of a building from the real-world measurements.
arXiv Detail & Related papers (2022-11-11T11:20:35Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.