Learning System Dynamics without Forgetting
- URL: http://arxiv.org/abs/2407.00717v1
- Date: Sun, 30 Jun 2024 14:55:18 GMT
- Title: Learning System Dynamics without Forgetting
- Authors: Xikun Zhang, Dongjin Song, Yushan Jiang, Yixin Chen, Dacheng Tao,
- Abstract summary: Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
- Score: 60.08612207170659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the trajectories of systems with unknown dynamics (\textit{i.e.} the governing rules) is crucial in various research fields, including physics and biology. This challenge has gathered significant attention from diverse communities. Most existing works focus on learning fixed system dynamics within one single system. However, real-world applications often involve multiple systems with different types of dynamics or evolving systems with non-stationary dynamics (dynamics shifts). When data from those systems are continuously collected and sequentially fed to machine learning models for training, these models tend to be biased toward the most recently learned dynamics, leading to catastrophic forgetting of previously observed/learned system dynamics. To this end, we aim to learn system dynamics via continual learning. Specifically, we present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics and encode the system-specific dynamics into binary masks over the model parameters. During the inference stage, the model can select the most confident mask based on the observational data to identify the system and predict future trajectories accordingly. Empirically, we systematically investigate the task configurations and compare the proposed MS-GODE with state-of-the-art techniques. More importantly, we construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics and significantly enriching the research field of machine learning for dynamic systems.
Related papers
- Generalizing Graph ODE for Learning Complex System Dynamics across
Environments [33.63818978256567]
GG-ODE is a machine learning framework for learning continuous multi-agent system dynamics across environments.
Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs)
Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range.
arXiv Detail & Related papers (2023-07-10T00:29:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.