Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach
- URL: http://arxiv.org/abs/2001.06175v1
- Date: Fri, 17 Jan 2020 07:25:59 GMT
- Title: Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach
- Authors: Chanoh Park, Peyman Moghadam, Soohwan Kim, Sridha Sridharan, Clinton
Fookes
- Abstract summary: We propose a targetless and structureless camera-DAR calibration method.
Our method combines a closed-form solution with a structureless bundle where the coarse-to-fine approach does not require an initial adjustment on the temporal parameters.
We demonstrate the accuracy and robustness of the proposed method through both simulation and real data experiments.
- Score: 32.15405927679048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for multimodal sensing systems for robotics is growing due to the
increase in robustness, reliability and accuracy offered by these systems.
These systems also need to be spatially and temporally co-registered to be
effective. In this paper, we propose a targetless and structureless
spatiotemporal camera-LiDAR calibration method. Our method combines a
closed-form solution with a modified structureless bundle adjustment where the
coarse-to-fine approach does not {require} an initial guess on the
spatiotemporal parameters. Also, as 3D features (structure) are calculated from
triangulation only, there is no need to have a calibration target or to match
2D features with the 3D point cloud which provides flexibility in the
calibration process and sensor configuration. We demonstrate the accuracy and
robustness of the proposed method through both simulation and real data
experiments using multiple sensor payload configurations mounted to hand-held,
aerial and legged robot systems. Also, qualitative results are given in the
form of a colorized point cloud visualization.
Related papers
- Neural Real-Time Recalibration for Infrared Multi-Camera Systems [2.249916681499244]
There are no learning-free or neural techniques for real-time recalibration of infrared multi-camera systems.
We propose a neural network-based method capable of dynamic real-time calibration.
arXiv Detail & Related papers (2024-10-18T14:37:37Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
arXiv Detail & Related papers (2023-11-04T14:32:55Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Global Unifying Intrinsic Calibration for Spinning and Solid-State
LiDARs [1.6252896527001484]
We propose a new type of calibration model for spinning and solid-state LiDARs.
We prove mathematically that the proposed model is well-constrained (has a unique answer) given four appropriately orientated targets.
For spinning LiDARs, we show with experimental data that the proposed matrix Lie Group model performs equally well in terms of reducing the P2P distance, while being more robust to noise.
arXiv Detail & Related papers (2020-12-06T16:55:58Z) - ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems [11.787271829250805]
Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment.
We propose a fully automatic calibration method for the non-repetitive scanning SSL and camera systems.
We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions.
arXiv Detail & Related papers (2020-11-17T09:11:28Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.