P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship
- URL: http://arxiv.org/abs/2311.02413v1
- Date: Sat, 4 Nov 2023 14:32:55 GMT
- Title: P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship
- Authors: Su Wang, Shini Zhang, Xuchong Qiu
- Abstract summary: We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
- Score: 1.6921147361216515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate and robust calibration result of sensors is considered as an
important building block to the follow-up research in the autonomous driving
and robotics domain. The current works involving extrinsic calibration between
3D LiDARs and monocular cameras mainly focus on target-based and target-less
methods. The target-based methods are often utilized offline because of
restrictions, such as additional target design and target placement limits. The
current target-less methods suffer from feature indeterminacy and feature
mismatching in various environments. To alleviate these limitations, we propose
a novel target-less calibration approach which is based on the 2D-3D edge point
extraction using the occlusion relationship in 3D space. Based on the extracted
2D-3D point pairs, we further propose an occlusion-guided point-matching method
that improves the calibration accuracy and reduces computation costs. To
validate the effectiveness of our approach, we evaluate the method performance
qualitatively and quantitatively on real images from the KITTI dataset. The
results demonstrate that our method outperforms the existing target-less
methods and achieves low error and high robustness that can contribute to the
practical applications relying on high-quality Camera-LiDAR calibration.
Related papers
- Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - Fixation-based Self-calibration for Eye Tracking in VR Headsets [0.21561701531034413]
The proposed method is based on the assumptions that the user's viewpoint can freely move.
fixations are first detected from the time-series data of uncalibrated gaze directions.
The calibration parameters are optimized by minimizing the sum of a dispersion metrics of the PoRs.
arXiv Detail & Related papers (2023-11-01T09:34:15Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems [11.787271829250805]
Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment.
We propose a fully automatic calibration method for the non-repetitive scanning SSL and camera systems.
We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions.
arXiv Detail & Related papers (2020-11-17T09:11:28Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
We propose a targetless and structureless camera-DAR calibration method.
Our method combines a closed-form solution with a structureless bundle where the coarse-to-fine approach does not require an initial adjustment on the temporal parameters.
We demonstrate the accuracy and robustness of the proposed method through both simulation and real data experiments.
arXiv Detail & Related papers (2020-01-17T07:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.