ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems
- URL: http://arxiv.org/abs/2011.08516v1
- Date: Tue, 17 Nov 2020 09:11:28 GMT
- Title: ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems
- Authors: Jiahe Cui, Jianwei Niu, Zhenchao Ouyang, Yunxiang He and Dian Liu
- Abstract summary: Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment.
We propose a fully automatic calibration method for the non-repetitive scanning SSL and camera systems.
We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions.
- Score: 11.787271829250805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the rapid development of Solid-State LiDAR (SSL) enables low-cost
and efficient obtainment of 3D point clouds from the environment, which has
inspired a large quantity of studies and applications. However, the
non-uniformity of its scanning pattern, and the inconsistency of the ranging
error distribution bring challenges to its calibration task. In this paper, we
proposed a fully automatic calibration method for the non-repetitive scanning
SSL and camera systems. First, a temporal-spatial-based geometric feature
refinement method is presented, to extract effective features from SSL point
clouds; then, the 3D corners of the calibration target (a printed checkerboard)
are estimated with the reflectance distribution of points. Based on the above,
a target-based extrinsic calibration method is finally proposed. We evaluate
the proposed method on different types of LiDAR and camera sensor combinations
in real conditions, and achieve accuracy and robustness calibration results.
The code is available at https://github.com/HViktorTsoi/ACSC.git .
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - Gaussian Splatting with Localized Points Management [52.009874685460694]
Localized Point Management (LPM) is capable of identifying those error-contributing zones in the highest demand for both point addition and geometry calibration.
LPM applies point densification in the identified zone, whilst resetting the opacity of those points residing in front of these regions so that a new opportunity is created to correct ill-conditioned points.
Notably, LPM improves both vanilla 3DGS and SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds.
arXiv Detail & Related papers (2024-06-06T16:55:07Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
arXiv Detail & Related papers (2023-11-04T14:32:55Z) - LiDAR Point--to--point Correspondences for Rigorous Registration of
Kinematic Scanning in Dynamic Networks [0.0]
We propose a novel trajectory adjustment procedure to improve the registration of LiDAR point clouds.
We describe the method for selecting correspondences and how they are inserted into the Dynamic Network as new observation models.
We then describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne laser scanning scenarios with low-cost MEMS inertial sensors.
arXiv Detail & Related papers (2022-01-03T11:53:55Z) - CRLF: Automatic Calibration and Refinement based on Line Feature for
LiDAR and Camera in Road Scenes [16.201111055979453]
We propose a novel method to calibrate the extrinsic parameter for LiDAR and camera in road scenes.
Our method introduces line features from static straight-line-shaped objects such as road lanes and poles in both image and point cloud.
We conduct extensive experiments on KITTI and our in-house dataset, quantitative and qualitative results demonstrate the robustness and accuracy of our method.
arXiv Detail & Related papers (2021-03-08T06:02:44Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z) - Accurate Alignment Inspection System for Low-resolution Automotive and
Mobility LiDAR [125.41260574344933]
An accurate inspection system is proposed for estimating a LiDAR alignment error after sensor attachment on a mobility system such as a vehicle or robot.
The proposed method uses only a single target board at the fixed position to estimate the three orientations (roll, tilt, and yaw) and the horizontal position of the LiDAR attachment with sub-degree and millimeter level accuracy.
arXiv Detail & Related papers (2020-08-24T17:47:59Z) - Automatic LiDAR Extrinsic Calibration System using Photodetector and
Planar Board for Large-scale Applications [110.32028864986918]
This study proposes a new concept of a target board with embedded photodetector arrays, named the PD-target system, to find the precise position of the correspondence laser beams on the target surface.
The experimental evaluation of the proposed system on low-resolution LiDAR showed that the LiDAR offset pose can be estimated within 0.1 degree and 3 mm levels of precision.
arXiv Detail & Related papers (2020-08-24T16:28:40Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
We propose a targetless and structureless camera-DAR calibration method.
Our method combines a closed-form solution with a structureless bundle where the coarse-to-fine approach does not require an initial adjustment on the temporal parameters.
We demonstrate the accuracy and robustness of the proposed method through both simulation and real data experiments.
arXiv Detail & Related papers (2020-01-17T07:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.