Bayesian inference of chaotic dynamics by merging data assimilation,
machine learning and expectation-maximization
- URL: http://arxiv.org/abs/2001.06270v2
- Date: Fri, 27 Mar 2020 19:52:25 GMT
- Title: Bayesian inference of chaotic dynamics by merging data assimilation,
machine learning and expectation-maximization
- Authors: Marc Bocquet, Julien Brajard, Alberto Carrassi, Laurent Bertino
- Abstract summary: We show how to combine data assimilation and machine learning in several ways to reconstruct high-dimensional chaotic dynamics.
We numerically and successfully test the approach on two relevant low-order chaotic models with distinct identifiability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction from observations of high-dimensional chaotic dynamics
such as geophysical flows is hampered by (i) the partial and noisy observations
that can realistically be obtained, (ii) the need to learn from long time
series of data, and (iii) the unstable nature of the dynamics. To achieve such
inference from the observations over long time series, it has been suggested to
combine data assimilation and machine learning in several ways. We show how to
unify these approaches from a Bayesian perspective using
expectation-maximization and coordinate descents. In doing so, the model, the
state trajectory and model error statistics are estimated all together.
Implementations and approximations of these methods are discussed. Finally, we
numerically and successfully test the approach on two relevant low-order
chaotic models with distinct identifiability.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Score-based Data Assimilation [7.215767098253208]
We introduce score-based data assimilation for trajectory inference.
We learn a score-based generative model of state trajectories based on the key insight that the score of an arbitrarily long trajectory can be decomposed into a series of scores over short segments.
arXiv Detail & Related papers (2023-06-18T14:22:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Data Assimilation Networks [1.5545257664210517]
Data assimilation aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations.
We propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms.
Our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.
arXiv Detail & Related papers (2020-10-19T17:35:36Z) - Online learning of both state and dynamics using ensemble Kalman filters [0.0]
This paper investigates the possibility to learn both the dynamics and the state online, i.e. to update their estimates at any time.
We consider the implication of learning dynamics online through (i) a global EnKF, (i) a local EnKF and (iii) an iterative EnKF.
We then demonstrate numerically the efficiency and assess the accuracy of these methods using one-dimensional, one-scale and two-scale chaotic Lorenz models.
arXiv Detail & Related papers (2020-06-06T13:19:26Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network.
Data assimilation is used to optimally combine a surrogate model with sparse data.
The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model.
Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach.
arXiv Detail & Related papers (2020-01-06T12:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.