論文の概要: Cyber Attack Detection thanks to Machine Learning Algorithms
- arxiv url: http://arxiv.org/abs/2001.06309v1
- Date: Fri, 17 Jan 2020 13:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 10:08:35.483063
- Title: Cyber Attack Detection thanks to Machine Learning Algorithms
- Title(参考訳): 機械学習アルゴリズムによるサイバー攻撃検出
- Authors: Antoine Delplace, Sheryl Hermoso and Kristofer Anandita
- Abstract要約: 本稿では、ネットワーク内の悪意のあるトラフィックを分類する能力を調べることによって、機械学習を実現可能なソリューションとして検討する。
提案手法は,共通ボットネットを含むNetFlowデータセットに対して,5種類の機械学習アルゴリズムを解析する。
ランダムフォレストは13のシナリオのうち8つで95%以上のボットネットを検出し、最も難しいデータセットでは55%以上を検知することに成功した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cybersecurity attacks are growing both in frequency and sophistication over
the years. This increasing sophistication and complexity call for more
advancement and continuous innovation in defensive strategies. Traditional
methods of intrusion detection and deep packet inspection, while still largely
used and recommended, are no longer sufficient to meet the demands of growing
security threats. As computing power increases and cost drops, Machine Learning
is seen as an alternative method or an additional mechanism to defend against
malwares, botnets, and other attacks. This paper explores Machine Learning as a
viable solution by examining its capabilities to classify malicious traffic in
a network.
First, a strong data analysis is performed resulting in 22 extracted features
from the initial Netflow datasets. All these features are then compared with
one another through a feature selection process. Then, our approach analyzes
five different machine learning algorithms against NetFlow dataset containing
common botnets. The Random Forest Classifier succeeds in detecting more than
95% of the botnets in 8 out of 13 scenarios and more than 55% in the most
difficult datasets. Finally, insight is given to improve and generalize the
results, especially through a bootstrapping technique.
- Abstract(参考訳): サイバーセキュリティ攻撃は、ここ数年、頻度と洗練度の両方で増加している。
この高度化と複雑さの増大は、防衛戦略におけるさらなる進歩と継続的な革新を呼び起こす。
従来の侵入検知とディープパケット検査の方法は、現在でも広く使われ、推奨されているが、セキュリティ上の脅威を増大させる要求を満たすには不十分である。
コンピューティングパワーの増大とコストの低下に伴い、機械学習は、マルウェア、ボットネット、その他の攻撃から防御するための代替の方法または追加のメカニズムと見なされる。
本稿では、ネットワーク内の悪意のあるトラフィックを分類する能力を調べることによって、機械学習を実現可能なソリューションとして検討する。
まず、初期netflowデータセットから22の抽出された特徴を、強いデータ解析を行う。
これらすべての機能は、機能選択プロセスを通じて互いに比較される。
そこで本研究では,共通ボットネットを含むNetFlowデータセットに対して,5種類の機械学習アルゴリズムを解析する。
ランダムフォレスト分類器は、13のシナリオのうち8シナリオでボットネットの95%以上、最も難しいデータセットで55%以上を検出することに成功している。
最後に、特にブートストラップ技術によって結果を改善し、一般化するための洞察を与える。
関連論文リスト
- Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study [4.2751988244805466]
本稿では,ネットワークトラヒックデータから状態マシンを抽出するために,オートマチック学習を用いる。
我々は,産業パートナーのRabbitRun Technologiesが開発した商用ネットワーク侵入検知システムに適用する。
我々の手法は、学習された状態マシンの状態数と遷移を平均67.5%削減する。
論文 参考訳(メタデータ) (2024-05-18T02:10:41Z) - Enhancing Malware Detection by Integrating Machine Learning with Cuckoo
Sandbox [0.0]
本研究の目的は,APIコールシーケンスを含むデータセットから抽出されたマルウェアを分類し,同定することである。
ディープラーニングと機械学習の両方のアルゴリズムは、極めて高いレベルの精度を実現し、特定のケースでは最大99%に達する。
論文 参考訳(メタデータ) (2023-11-07T22:33:17Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
本稿では,事前訓練したDNNの重みから特徴を抽出するバックドア検出手法を提案する。
他の検出技術と比較して、これはトレーニングデータを必要としないなど、多くのメリットがある。
提案手法は, 競合するアルゴリズムよりも効率性が高く, より正確であり, 深層学習とAIの安全な適用を確実にするのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T20:20:18Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
ネットワーク侵入検出(NID)における機械学習の原理的利用法を示す。
我々は、Bi-ALSTMをベースとした、おそらく最初のNIDSであるNetSentryを提案する。
XSSやWeb bruteforceなどの攻撃検出率を最大3倍に向上させるとともに、最先端技術よりもF1スコアが33%以上上昇することが実証された。
論文 参考訳(メタデータ) (2022-02-20T17:41:02Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Improving Botnet Detection with Recurrent Neural Network and Transfer
Learning [5.602292536933117]
ボットネット検出は、ボットネットの拡散を防ぎ、悪意のある活動を防ぐための重要なステップである。
機械学習(ML)を用いた最近のアプローチでは、以前のアプローチよりもパフォーマンスが向上した。
Recurrent Variational Autoencoder (RVAE) を用いた新しいボットネット検出法を提案する。
論文 参考訳(メタデータ) (2021-04-26T14:05:01Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。