論文の概要: Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study
- arxiv url: http://arxiv.org/abs/2405.11141v2
- Date: Sat, 13 Jul 2024 02:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 00:36:09.284173
- Title: Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study
- Title(参考訳): 統計的機械学習によるオートマタ学習の強化:ネットワークセキュリティケーススタディ
- Authors: Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh, Patricio Saavedra,
- Abstract要約: 本稿では,ネットワークトラヒックデータから状態マシンを抽出するために,オートマチック学習を用いる。
我々は,産業パートナーのRabbitRun Technologiesが開発した商用ネットワーク侵入検知システムに適用する。
我々の手法は、学習された状態マシンの状態数と遷移を平均67.5%削減する。
- 参考スコア(独自算出の注目度): 4.2751988244805466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion detection systems are crucial for network security. Verification of these systems is complicated by various factors, including the heterogeneity of network platforms and the continuously changing landscape of cyber threats. In this paper, we use automata learning to derive state machines from network-traffic data with the objective of supporting behavioural verification of intrusion detection systems. The most innovative aspect of our work is addressing the inability to directly apply existing automata learning techniques to network-traffic data due to the numeric nature of such data. Specifically, we use interpretable machine learning (ML) to partition numeric ranges into intervals that strongly correlate with a system's decisions regarding intrusion detection. These intervals are subsequently used to abstract numeric ranges before automata learning. We apply our ML-enhanced automata learning approach to a commercial network intrusion detection system developed by our industry partner, RabbitRun Technologies. Our approach results in an average 67.5% reduction in the number of states and transitions of the learned state machines, while achieving an average 28% improvement in accuracy compared to using expertise-based numeric data abstraction. Furthermore, the resulting state machines help practitioners in verifying system-level security requirements and exploring previously unknown system behaviours through model checking and temporal query checking. We make our implementation and experimental data available online.
- Abstract(参考訳): 侵入検知システムはネットワークセキュリティにとって不可欠である。
これらのシステムの検証は、ネットワークプラットフォームの不均一性や、サイバー脅威の継続的な変化など、さまざまな要因によって複雑である。
本稿では,侵入検知システムの動作検証を支援することを目的とした,ネットワークトラヒックデータから状態マシンを抽出するオートマチック学習を提案する。
我々の研究の最も革新的な側面は、そのようなデータの数値的性質のため、既存のオートマトン学習技術をネットワークトラヒックデータに直接適用できないことである。
具体的には、解釈可能な機械学習(ML)を用いて、数値の範囲を、侵入検出に関するシステムの判断と強く相関する間隔に分割する。
これらの区間はその後、自動学習の前に数値範囲を抽象化するために使用される。
産業パートナーのRabbitRun Technologiesが開発した商用ネットワーク侵入検知システムに,機械学習による自動学習アプローチを適用した。
提案手法は,学習した状態マシンの状態を67.5%削減すると同時に,専門知識に基づく数値データ抽象化と比較して,平均28%の精度向上を実現している。
さらに、結果のステートマシンは、システムレベルのセキュリティ要件の検証や、モデルチェックや時間的クエリチェックを通じて、これまで知らなかったシステム動作の探索を支援する。
実装と実験データをオンラインで公開しています。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System [0.0]
本稿では,オンライン攻撃検知とネットワークトラフィック分類システムを提案する。
ストリーム機械学習、ディープラーニング、およびアンサンブルラーニングのテクニックを組み合わせる。
悪意のあるトラフィックフローの存在を検出し、それらが表現する攻撃の種類に応じてそれらを分類することができる。
論文 参考訳(メタデータ) (2023-02-18T04:06:24Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。