論文の概要: Evolutionary Neural Architecture Search for Retinal Vessel Segmentation
- arxiv url: http://arxiv.org/abs/2001.06678v3
- Date: Wed, 18 Mar 2020 05:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 05:30:56.475222
- Title: Evolutionary Neural Architecture Search for Retinal Vessel Segmentation
- Title(参考訳): 進化的ニューラルアーキテクチャによる網膜血管セグメンテーションの探索
- Authors: Zhun Fan, Jiahong Wei, Guijie Zhu, Jiajie Mo, Wenji Li
- Abstract要約: 網膜血管分割のためのエンコーダデコーダアーキテクチャを最適化するために、ニューラルアーキテクチャサーチ(NAS)を適用した新しいアプローチを提案する。
修正された進化的アルゴリズムは、限られた計算資源を持つエンコーダ・デコーダフレームワークのアーキテクチャの進化に使用される。
クロストレーニングの結果、進化したモデルには相当な拡張性があり、臨床疾患の診断に大きな可能性があることが示唆された。
- 参考スコア(独自算出の注目度): 2.0159253466233222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate retinal vessel segmentation (RVS) is of great significance to
assist doctors in the diagnosis of ophthalmology diseases and other systemic
diseases. Manually designing a valid neural network architecture for retinal
vessel segmentation requires high expertise and a large workload. In order to
improve the performance of vessel segmentation and reduce the workload of
manually designing neural network, we propose novel approach which applies
neural architecture search (NAS) to optimize an encoder-decoder architecture
for retinal vessel segmentation. A modified evolutionary algorithm is used to
evolve the architectures of encoder-decoder framework with limited computing
resources. The evolved model obtained by the proposed approach achieves top
performance among all compared methods on the three datasets, namely DRIVE,
STARE and CHASE_DB1, but with much fewer parameters. Moreover, the results of
cross-training show that the evolved model is with considerable scalability,
which indicates a great potential for clinical disease diagnosis.
- Abstract(参考訳): 正確な網膜血管セグメンテーション(RVS)は、眼科疾患やその他の全身疾患の診断において医師を支援する上で非常に重要である。
網膜血管セグメンテーションのための有効なニューラルネットワークアーキテクチャを手作業で設計するには、高度な専門知識と大きなワークロードが必要です。
血管セグメンテーションの性能を改善し,手動で設計するニューラルネットワークの作業量を削減するために,網膜血管セグメンテーションのためのエンコーダデコーダアーキテクチャを最適化するためのニューラルネットワーク探索(NAS)を適用した新しいアプローチを提案する。
改良進化アルゴリズムは、限られた計算資源でエンコーダ・デコーダ・フレームワークのアーキテクチャを発展させるために用いられる。
提案手法により得られた進化的モデルは,DRIVE, STARE, CHASE_DB1 という3つのデータセットで比較した手法の上位性能を実現するが,パラメータははるかに少ない。
さらに, クロストレーニングの結果, 進化したモデルはかなりのスケーラビリティを示し, 臨床疾患診断の可能性も示唆した。
関連論文リスト
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - AD-NEv++ : The multi-architecture neuroevolution-based multivariate anomaly detection framework [0.794682109939797]
異常検出ツールと方法は、現代のサイバー物理およびセンサーベースのシステムにおいて重要な分析機能を可能にする。
我々は,サブスペース進化,モデル進化,微調整を相乗的に組み合わせた3段階の神経進化に基づくAD-NEv++を提案する。
我々は、AD-NEv++が全ての異常検出ベンチマークにおいて最先端のGNN(Graph Neural Networks)モデルアーキテクチャを改善し、性能を向上できることを示す。
論文 参考訳(メタデータ) (2024-03-25T08:40:58Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
自動網膜血管セグメンテーションシステムは、臨床診断及び眼科研究を効果的に促進することができる。
ディープラーニングベースの手法が提案され、いくつかのカスタマイズされたモジュールが有名なエンコーダデコーダアーキテクチャU-netに統合されている。
その結果,提案手法は先行技術よりも優れ,感性/リコール,F1スコア,MCCの最先端性能を実現している。
論文 参考訳(メタデータ) (2021-03-25T06:10:47Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
遺伝的U-Netは、より優れた網膜血管セグメンテーションを実現することができるが、アーキテクチャに基づくパラメータが少ないU字型畳み込みニューラルネットワーク(CNN)を生成するために提案されている。
実験の結果,提案手法を用いて得られたアーキテクチャは,元のU-Netパラメータの1%以下で優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-29T13:31:36Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
本稿では,強化学習を用いた最適学習戦略のための自動探索手法を提案する。
提案手法は,3次元医用画像分割の課題に対して有効である。
論文 参考訳(メタデータ) (2020-06-10T14:24:06Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。