論文の概要: Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images
- arxiv url: http://arxiv.org/abs/2103.13622v1
- Date: Thu, 25 Mar 2021 06:10:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 21:36:42.780071
- Title: Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images
- Title(参考訳): カラーファンドス画像における網膜血管セグメンテーションのためのコンテキスト情報強化畳み込みニューラルネットワーク
- Authors: Muyi Sun, Guanhong Zhang
- Abstract要約: 自動網膜血管セグメンテーションシステムは、臨床診断及び眼科研究を効果的に促進することができる。
ディープラーニングベースの手法が提案され、いくつかのカスタマイズされたモジュールが有名なエンコーダデコーダアーキテクチャU-netに統合されている。
その結果,提案手法は先行技術よりも優れ,感性/リコール,F1スコア,MCCの最先端性能を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate retinal vessel segmentation is a challenging problem in color fundus
image analysis. An automatic retinal vessel segmentation system can effectively
facilitate clinical diagnosis and ophthalmological research. Technically, this
problem suffers from various degrees of vessel thickness, perception of
details, and contextual feature fusion. For addressing these challenges, a deep
learning based method has been proposed and several customized modules have
been integrated into the well-known encoder-decoder architecture U-net, which
is mainly employed in medical image segmentation. Structurally, cascaded
dilated convolutional modules have been integrated into the intermediate
layers, for obtaining larger receptive field and generating denser encoded
feature maps. Also, the advantages of the pyramid module with spatial
continuity have been taken, for multi-thickness perception, detail refinement,
and contextual feature fusion. Additionally, the effectiveness of different
normalization approaches has been discussed in network training for different
datasets with specific properties. Experimentally, sufficient comparative
experiments have been enforced on three retinal vessel segmentation datasets,
DRIVE, CHASEDB1, and the unhealthy dataset STARE. As a result, the proposed
method outperforms the work of predecessors and achieves state-of-the-art
performance in Sensitivity/Recall, F1-score and MCC.
- Abstract(参考訳): 正確な網膜血管セグメンテーションは、色眼底画像解析において難しい問題である。
自動網膜血管セグメンテーションシステムは、臨床診断及び眼科研究を効果的に促進することができる。
技術的には、この問題は様々な容器の厚さ、詳細の知覚、文脈的特徴の融合に苦しむ。
これらの課題に対処するため、深層学習に基づく手法が提案され、広く知られたエンコーダ・デコーダアーキテクチャであるu-netにいくつかのカスタマイズされたモジュールが組み込まれている。
構造的には、カスケード拡張畳み込みモジュールが中間層に統合され、より大きな受容場を獲得し、より密に符号化された特徴写像を生成する。
また, 空間連続性を持つピラミッドモジュールの利点として, マルチタイクネス知覚, 詳細精細化, 文脈的特徴融合があげられる。
さらに、特定の特性を持つ異なるデータセットに対するネットワークトレーニングにおいて、異なる正規化アプローチの有効性が議論されている。
実験的に、十分な比較実験が3つの網膜血管セグメンテーションデータセット、drive、 chasedb1、および不健全データセット stareで実施されている。
その結果,提案手法は先行技術よりも優れ,感性/リコール,F1スコア,MCCの最先端性能を実現している。
関連論文リスト
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
本稿では,MDFI-Net という DPCN に基づく機能拡張型インタラクションネットワークを提案する。
提案したMDFI-Netは,公開データセットの最先端手法よりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2024-10-20T16:42:22Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
OCT-Aセグメンテーションデータセット(ROSE)は229枚のOCT-A画像からなり、中心線レベルまたは画素レベルで血管アノテーションを付加する。
次に,スプリットをベースとしたSCF-Net(Coarse-to-Fine vessel segmentation Network)を提案する。
SCF-Netでは、スプリットベース粗いセグメンテーション(SCS)モジュールを最初に導入し、スプリットベースリファインメント(SRN)モジュールを使用して形状・形状を最適化する。
論文 参考訳(メタデータ) (2020-07-10T06:54:19Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。