Adaptive Stochastic Optimization
- URL: http://arxiv.org/abs/2001.06699v1
- Date: Sat, 18 Jan 2020 16:30:19 GMT
- Title: Adaptive Stochastic Optimization
- Authors: Frank E. Curtis and Katya Scheinberg
- Abstract summary: Adaptive optimization methods have the potential to offer significant computational savings when training large-scale systems.
Modern approaches based on the gradient method are non-adaptive in the sense that their implementation employs prescribed parameter values that need to be tuned for each application.
- Score: 1.7945141391585486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization lies at the heart of machine learning and signal processing.
Contemporary approaches based on the stochastic gradient method are
non-adaptive in the sense that their implementation employs prescribed
parameter values that need to be tuned for each application. This article
summarizes recent research and motivates future work on adaptive stochastic
optimization methods, which have the potential to offer significant
computational savings when training large-scale systems.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
We establish local convergence for gradient descent with adaptive step size for problems such as matrix inversion.
We show that these first order optimization methods can achieve sub-linear or linear convergence.
arXiv Detail & Related papers (2021-12-30T00:50:30Z) - Stochastic Learning Rate Optimization in the Stochastic Approximation
and Online Learning Settings [0.0]
In this work, multiplicativeity is applied to the learning rate of optimization algorithms, giving rise to learning-rate schemes.
In this work, theoretical convergence results of Gradient Descent equipped with this novel learning rate scheme are presented.
arXiv Detail & Related papers (2021-10-20T18:10:03Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
It is thought that adaptive optimization algorithms represent the key pillar behind the of the Learning field.
In this paper we introduce adaptive momentum techniques for different non-smooth objective problems.
arXiv Detail & Related papers (2021-10-16T09:47:57Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Learning Stochastic Optimal Policies via Gradient Descent [17.9807134122734]
We systematically develop a learning-based treatment of optimal control (SOC)
We propose a derivation of adjoint sensitivity results for differential equations through direct application of variational calculus.
We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
arXiv Detail & Related papers (2021-06-07T16:43:07Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - NOVAS: Non-convex Optimization via Adaptive Stochastic Search for
End-to-End Learning and Control [22.120942106939122]
We propose the use of adaptive search as a building block for general, non- neural optimization operations.
We benchmark it against two existing alternatives on a synthetic energy-based structured task, and showcase its use in optimal control applications.
arXiv Detail & Related papers (2020-06-22T03:40:36Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.