論文の概要: Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2001.06858v1
- Date: Sun, 19 Jan 2020 16:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 10:13:30.540762
- Title: Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification
- Title(参考訳): 適応RBFベースサロゲートモデルを用いた不確実性定量化による支出関数の最適点の探索
- Authors: Ray-Bing Chen, Yuan Wang, C. F. Jeff Wu
- Abstract要約: 本稿では,適応的放射基底関数 (RBF) を用いた不確実性定量化によるサロゲートモデルを用いた新しいグローバル最適化フレームワークを提案する。
まずRBFに基づくベイズ代理モデルを用いて真の関数を近似し、新しい点が探索されるたびにRBFのパラメータを適応的に推定し更新することができる。
次に、モデル誘導選択基準を用いて、関数評価のための候補セットから新しい点を識別する。
- 参考スコア(独自算出の注目度): 11.486221800371919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Global optimization of expensive functions has important applications in
physical and computer experiments. It is a challenging problem to develop
efficient optimization scheme, because each function evaluation can be costly
and the derivative information of the function is often not available. We
propose a novel global optimization framework using adaptive Radial Basis
Functions (RBF) based surrogate model via uncertainty quantification. The
framework consists of two iteration steps. It first employs an RBF-based
Bayesian surrogate model to approximate the true function, where the parameters
of the RBFs can be adaptively estimated and updated each time a new point is
explored. Then it utilizes a model-guided selection criterion to identify a new
point from a candidate set for function evaluation. The selection criterion
adopted here is a sample version of the expected improvement (EI) criterion. We
conduct simulation studies with standard test functions, which show that the
proposed method has some advantages, especially when the true surface is not
very smooth. In addition, we also propose modified approaches to improve the
search performance for identifying global optimal points and to deal with the
higher dimension scenarios.
- Abstract(参考訳): 高価な関数のグローバルな最適化は、物理およびコンピュータ実験において重要な応用である。
各関数の評価は費用がかかり、その関数の導出情報が得られないことが多いため、効率的な最適化スキームを開発することは難しい問題である。
本稿では,適応的放射基底関数(RBF)に基づく不確実性定量化による代理モデルを用いた新しいグローバル最適化フレームワークを提案する。
フレームワークは2つのイテレーションステップで構成される。
まずRBFに基づくベイズ代理モデルを用いて真の関数を近似し、新しい点が探索されるたびにRBFのパラメータを適応的に推定し更新することができる。
そして、モデル誘導選択基準を用いて、関数評価のための候補セットから新しい点を識別する。
ここで採用される選択基準は、期待される改善基準(EI)のサンプル版である。
標準試験関数を用いたシミュレーション実験を行い,本手法は,特に実表面があまり滑らかでない場合において,いくつかの利点があることを示す。
さらに,グローバルな最適点を同定し,高次元シナリオに対応するために,探索性能を改善するための改良手法を提案する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
探索空間の特定の領域の好みを符号化するために,非定常性を利用した新しい情報共分散関数を提案する。
提案した関数は,より弱い事前情報の下でも,ハイ次元でのベイズ最適化のサンプル効率を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-08-04T15:05:11Z) - On the development of a Bayesian optimisation framework for complex
unknown systems [11.066706766632578]
本稿では, ベイズ最適化アルゴリズムを様々な合成試験関数に対して実験的に検討し, 比較する。
取得関数の選択とトレーニングサンプル数,取得関数の正確な計算,モンテカルロに基づくアプローチについて検討する。
論文 参考訳(メタデータ) (2022-07-19T09:50:34Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
我々は、相互情報の概念に基づいて、修正されたMES取得関数を開発する。
その結果、RMESは、いくつかの合成関数ベンチマークと実世界の最適化問題において、MESよりも一貫した改善を示している。
論文 参考訳(メタデータ) (2022-02-28T08:11:02Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。