Towards Augmented Reality-based Suturing in Monocular Laparoscopic
Training
- URL: http://arxiv.org/abs/2001.06894v1
- Date: Sun, 19 Jan 2020 19:59:58 GMT
- Title: Towards Augmented Reality-based Suturing in Monocular Laparoscopic
Training
- Authors: Chandrakanth Jayachandran Preetha, Jonathan Kloss, Fabian Siegfried
Wehrtmann, Lalith Sharan, Carolyn Fan, Beat Peter M\"uller-Stich, Felix
Nickel, Sandy Engelhardt
- Abstract summary: The paper proposes an Augmented Reality environment with quantitative and qualitative visual representations to enhance laparoscopic training outcomes performed on a silicone pad.
This is enabled by a multi-task supervised deep neural network which performs multi-class segmentation and depth map prediction.
The network achieves a dice score of 0.67 for surgical needle segmentation, 0.81 for needle holder instrument segmentation and a mean absolute error of 6.5 mm for depth estimation.
- Score: 0.5707453684578819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Minimally Invasive Surgery (MIS) techniques have gained rapid popularity
among surgeons since they offer significant clinical benefits including reduced
recovery time and diminished post-operative adverse effects. However,
conventional endoscopic systems output monocular video which compromises depth
perception, spatial orientation and field of view. Suturing is one of the most
complex tasks performed under these circumstances. Key components of this tasks
are the interplay between needle holder and the surgical needle. Reliable 3D
localization of needle and instruments in real time could be used to augment
the scene with additional parameters that describe their quantitative geometric
relation, e.g. the relation between the estimated needle plane and its rotation
center and the instrument. This could contribute towards standardization and
training of basic skills and operative techniques, enhance overall surgical
performance, and reduce the risk of complications. The paper proposes an
Augmented Reality environment with quantitative and qualitative visual
representations to enhance laparoscopic training outcomes performed on a
silicone pad. This is enabled by a multi-task supervised deep neural network
which performs multi-class segmentation and depth map prediction. Scarcity of
labels has been conquered by creating a virtual environment which resembles the
surgical training scenario to generate dense depth maps and segmentation maps.
The proposed convolutional neural network was tested on real surgical training
scenarios and showed to be robust to occlusion of the needle. The network
achieves a dice score of 0.67 for surgical needle segmentation, 0.81 for needle
holder instrument segmentation and a mean absolute error of 6.5 mm for depth
estimation.
Related papers
- Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
Improved surgical skill is generally associated with improved patient outcomes, but assessment is subjective and labour-intensive.
A new public dataset is introduced, focusing on simulated surgery, using the nasal phase of endoscopic pituitary surgery as an exemplar.
A Multilayer Perceptron achieved 87% accuracy in predicting surgical skill level (novice or expert), with the "ratio of total procedure time to instrument visible time" correlated with higher surgical skill.
arXiv Detail & Related papers (2024-09-25T15:27:44Z) - Monocular Microscope to CT Registration using Pose Estimation of the
Incus for Augmented Reality Cochlear Implant Surgery [3.8909273404657556]
We develop a method that permits direct 2D-to-3D registration of the view microscope video to the pre-operative Computed Tomography (CT) scan without the need for external tracking equipment.
Our results demonstrate the accuracy with an average rotation error of less than 25 degrees and a translation error of less than 2 mm, 3 mm, and 0.55% for the x, y, and z axes, respectively.
arXiv Detail & Related papers (2024-03-12T00:26:08Z) - Redefining the Laparoscopic Spatial Sense: AI-based Intra- and
Postoperative Measurement from Stereoimages [3.2039076408339353]
We develop a novel human-AI-based method for laparoscopic measurements utilizing stereo vision.
Based on a holistic qualitative requirements analysis, this work proposes a comprehensive measurement method.
Our results outline the potential of our method achieving high accuracies in distance measurements with errors below 1 mm.
arXiv Detail & Related papers (2023-11-16T10:19:04Z) - EyeLS: Shadow-Guided Instrument Landing System for Intraocular Target
Approaching in Robotic Eye Surgery [51.05595735405451]
Robotic ophthalmic surgery is an emerging technology to facilitate high-precision interventions such as retina penetration in subretinal injection and removal of floating tissues in retinal detachment.
Current image-based methods cannot effectively estimate the needle tip's trajectory towards both retinal and floating targets.
We propose to use the shadow positions of the target and the instrument tip to estimate their relative depth position.
Our method succeeds target approaching on a retina model, and achieves an average depth error of 0.0127 mm and 0.3473 mm for floating and retinal targets respectively in the surgical simulator.
arXiv Detail & Related papers (2023-11-15T09:11:37Z) - Phase-Specific Augmented Reality Guidance for Microscopic Cataract
Surgery Using Long-Short Spatiotemporal Aggregation Transformer [14.568834378003707]
Phaemulsification cataract surgery (PCS) is a routine procedure using a surgical microscope.
PCS guidance systems extract valuable information from surgical microscopic videos to enhance proficiency.
Existing PCS guidance systems suffer from non-phasespecific guidance, leading to redundant visual information.
We propose a novel phase-specific augmented reality (AR) guidance system, which offers tailored AR information corresponding to the recognized surgical phase.
arXiv Detail & Related papers (2023-09-11T02:56:56Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.