論文の概要: VMRFANet:View-Specific Multi-Receptive Field Attention Network for
Person Re-identification
- arxiv url: http://arxiv.org/abs/2001.07354v1
- Date: Tue, 21 Jan 2020 06:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:10:51.954127
- Title: VMRFANet:View-Specific Multi-Receptive Field Attention Network for
Person Re-identification
- Title(参考訳): VMRFANet:人物再識別のための視野特異的多受容フィールド注意ネットワーク
- Authors: Honglong Cai, Yuedong Fang, Zhiguan Wang, Tingchun Yeh, Jinxing Cheng
- Abstract要約: 本稿では,様々な大きさのフィルタを用いて,情報画素に注目するネットワークを支援するMRFA(Multi-Receptive Field attention)モジュールを提案する。
本稿では,ビュー条件の変動に対処するためのアテンションモジュールを誘導するビュー固有メカニズムを提案する。
本手法は,市場におけるランク-1/mAPの95.5% / 88.1%,デュークMTMC-reIDの88.9% / 80.0%,CUHK03ラベル付きデータセットの81.1% / 78.8%,CUHK03検出データセットの78.9% / 75.3%を達成している。
- 参考スコア(独自算出の注目度): 3.1498833540989413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (re-ID) aims to retrieve the same person across
different cameras. In practice, it still remains a challenging task due to
background clutter, variations on body poses and view conditions, inaccurate
bounding box detection, etc. To tackle these issues, in this paper, we propose
a novel multi-receptive field attention (MRFA) module that utilizes filters of
various sizes to help network focusing on informative pixels. Besides, we
present a view-specific mechanism that guides attention module to handle the
variation of view conditions. Moreover, we introduce a Gaussian horizontal
random cropping/padding method which further improves the robustness of our
proposed network. Comprehensive experiments demonstrate the effectiveness of
each component. Our method achieves 95.5% / 88.1% in rank-1 / mAP on
Market-1501, 88.9% / 80.0% on DukeMTMC-reID, 81.1% / 78.8% on CUHK03 labeled
dataset and 78.9% / 75.3% on CUHK03 detected dataset, outperforming current
state-of-the-art methods.
- Abstract(参考訳): 人物再識別(re-ID)は、異なるカメラで同じ人物を回収することを目的としている。
実際には、背景の乱雑さ、身体のポーズの変化、視界の状況の変化、不正確な境界ボックスの検出など、依然として困難な作業である。
本稿では,様々な大きさのフィルタを用いて,情報画素に注目するネットワークを支援するMRFA(Multi-Receptive Field attention)モジュールを提案する。
また,ビュー条件の変化に対処するために,注目モジュールを誘導するビュー固有機構を提案する。
さらに,提案するネットワークのロバスト性をさらに向上する,ガウス型水平ランダムトリミング/パディング手法を提案する。
総合的な実験は各コンポーネントの有効性を示す。
本手法は,マーケット1501におけるランク-1/mAPの95.5% / 88.1%,デュークMTMC-reIDでは88.9% / 80.0%,CUHK03ラベル付きデータセットでは81.1% / 78.8%,CUHK03検出データセットでは78.9% / 75.3%,最先端の手法では78.9% / 75.3%を達成した。
関連論文リスト
- Multiple Information Prompt Learning for Cloth-Changing Person Re-Identification [17.948263914620238]
布を交換するReIDのためのMIPL(Multiple Information prompt Learning)方式を提案する。
CISモジュールは、衣料品情報を元のRGBイメージ機能から切り離すように設計されている。
The Bio-guided attention (BGA) module is proposed to increase the learning intensity of the model for key information。
論文 参考訳(メタデータ) (2024-11-01T03:08:10Z) - Domain-Guided Masked Autoencoders for Unique Player Identification [62.87054782745536]
マスク付きオートエンコーダ (MAE) は, 従来の特徴抽出器よりも優れた代替手段として出現している。
人間の視覚に触発され、我々はd-MAEと呼ばれるMAEのための新しいドメイン誘導マスキングポリシーを考案した。
3つの大規模スポーツデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-03-17T20:14:57Z) - AaP-ReID: Improved Attention-Aware Person Re-identification [2.5761958263376745]
AaP-ReIDは、ResNetベースのアーキテクチャにチャネルの注意を組み込む、より効果的な人物ReIDの手法である。
提案手法は,Channel-Wise Attention Bottleneckブロックを組み込んで,特徴マップにおけるChannel-Wise Attention Bottleneckブロックの重要性を動的に調整することで特徴を識別することができる。
論文 参考訳(メタデータ) (2023-09-27T16:54:38Z) - A High-Accuracy Unsupervised Person Re-identification Method Using
Auxiliary Information Mined from Datasets [53.047542904329866]
マルチモーダルな特徴学習のためのデータセットから抽出した補助情報を利用する。
本稿では,Restricted Label Smoothing Cross Entropy Loss (RLSCE), Weight Adaptive Triplet Loss (WATL), Dynamic Training Iterations (DTI)の3つの効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-05-06T10:16:18Z) - Learning Instance-level Spatial-Temporal Patterns for Person
Re-identification [80.43222559182072]
本稿では,Re-IDの精度を向上させるために,新しいインスタンスレベルおよび時空間ディスタングル型Re-ID法を提案する。
提案フレームワークでは,移動方向などのパーソナライズされた情報を探索空間をさらに狭めるため,明示的に検討している。
提案手法は市場1501で90.8%,DukeMTMC-reIDで89.1%,ベースライン82.2%,72.7%から改善した。
論文 参考訳(メタデータ) (2021-07-31T07:44:47Z) - Neighbourhood-guided Feature Reconstruction for Occluded Person
Re-Identification [45.704612531562404]
本研究では,周辺情報をギャラリーのイメージセットでフル活用し,埋蔵部品の特徴表現の再構築を提案する。
大規模なOccluded-DukeMTMCベンチマークでは,64.2%のmAPと67.6%のランク1精度を達成した。
論文 参考訳(メタデータ) (2021-05-16T03:53:55Z) - ES-Net: Erasing Salient Parts to Learn More in Re-Identification [46.624740579314924]
画像中の有意領域を消去することで包括的特徴を学習するための新しいネットワーク「Easing-Salient Net (ES-Net)」を提案する。
ES-Netは3つのPerson re-IDベンチマークと2つのVine re-IDベンチマークで最先端の手法より優れています。
論文 参考訳(メタデータ) (2021-03-10T08:19:46Z) - Lightweight Multi-Branch Network for Person Re-Identification [6.353193172884524]
本稿では,資源効率の高いOSNetバックボーン上に構築されたマルチブランチアーキテクチャにおいて,グローバル,パートベース,チャネル機能を組み合わせた軽量ネットワークを提案する。
トレーニング手法と設計選択をうまく組み合わせることで, CUHK03ラベル付き, CUHK03検出, Market-1501で85.1% mAP / 87.2% rank1, 82.4% mAP / 84.9% rank1, 91.5% mAP / 96.3% rank1の最先端結果が得られる。
論文 参考訳(メタデータ) (2021-01-26T13:28:46Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
文脈情報は人体構成や見えないキーポイントを推論する上で重要な役割を担っている。
そこで我々は,空間とチャネルのコンテキスト情報を効率的に統合するカスケードコンテキストミキサー(CCM)を提案する。
CCMの表現能力を最大化するために、我々は、強陰性な人検出マイニング戦略と共同訓練戦略を開発する。
検出精度を向上させるために,キーポイント予測を後処理するためのいくつかのサブピクセル改良手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T02:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。