論文の概要: Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination
- arxiv url: http://arxiv.org/abs/2405.01101v4
- Date: Fri, 06 Dec 2024 19:42:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:17.216172
- Title: Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination
- Title(参考訳): 不確実な特徴融合と自己重み付けによる人物再同定の促進
- Authors: Quang-Huy Che, Le-Chuong Nguyen, Duc-Tuan Luu, Vinh-Tiep Nguyen,
- Abstract要約: 人物再識別(Re-ID)は、監視システムにおいて、異なるカメラビューで同一人物を特定することを含む、困難なタスクである。
本稿では,不確定特徴融合法(UFFM)と自動重み付け器(AMC)によるReIDモデルの能力を向上する新しい手法を提案する。
本手法は,人物の再識別データセットで評価した場合のランク@1精度と平均精度(mAP)を大幅に改善する。
- 参考スコア(独自算出の注目度): 1.183049138259841
- License:
- Abstract: Person re-identification (Re-ID) is a challenging task that involves identifying the same person across different camera views in surveillance systems. Current methods usually rely on features from single-camera views, which can be limiting when dealing with multiple cameras and challenges such as changing viewpoints and occlusions. In this paper, a new approach is introduced that enhances the capability of ReID models through the Uncertain Feature Fusion Method (UFFM) and Auto-weighted Measure Combination (AMC). UFFM generates multi-view features using features extracted independently from multiple images to mitigate view bias. However, relying only on similarity based on multi-view features is limited because these features ignore the details represented in single-view features. Therefore, we propose the AMC method to generate a more robust similarity measure by combining various measures. Our method significantly improves Rank@1 accuracy and Mean Average Precision (mAP) when evaluated on person re-identification datasets. Combined with the BoT Baseline on challenging datasets, we achieve impressive results, with a 7.9% improvement in Rank@1 and a 12.1% improvement in mAP on the MSMT17 dataset. On the Occluded-DukeMTMC dataset, our method increases Rank@1 by 22.0% and mAP by 18.4%. Code is available: \url{https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC}
- Abstract(参考訳): 人物再識別(Re-ID)は、監視システムにおいて、異なるカメラビューで同一人物を特定するという課題である。
現行の手法は通常、単一カメラビューの機能に依存しており、複数のカメラを扱う場合や、視点の変更やオクルージョンといった課題に制限を加えることができる。
本稿では,不確定特徴融合法(UFFM)と自己重み付き測度結合(AMC)によってReIDモデルの能力を高める新しい手法を提案する。
UFFMは、ビューバイアスを軽減するために、複数の画像から独立して抽出された特徴を用いて、マルチビュー機能を生成する。
しかし、これらの機能はシングルビュー機能で表現される詳細を無視しているため、マルチビュー機能に基づく類似性のみに依存することは限られている。
そこで本研究では,様々な手法を組み合わせることで,より堅牢な類似度尺度を生成するためのAMC法を提案する。
本手法は,人物の再識別データセットで評価した場合のランク@1精度と平均精度(mAP)を大幅に改善する。
挑戦的なデータセットに関するBoT Baselineと組み合わせることで、Ranc@1が7.9%改善され、MSMT17データセットのmAPが12.1%改善されました。
Occluded-DukeMTMC データセットでは Rank@1 が 22.0% 増加し,mAP が 18.4% 増加した。
コードは: \url{https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC}
関連論文リスト
- Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
我々はトランスフォーマーに基づく人物識別フレームワークであるSSSC-TransReIDを組み合わせた新しい自己監督・監督手法を提案した。
我々は、ネガティブなサンプルや追加の事前学習なしに、人物の再識別のための特徴表現を強化することができる自己教師付きコントラスト学習ブランチを設計した。
提案モデルでは, 平均平均精度(mAP) とランク1の精度において, 最先端のReID手法よりも優れたRe-ID性能が得られ, 高いマージンで性能が向上する。
論文 参考訳(メタデータ) (2024-10-21T03:17:25Z) - Robust Ensemble Person Re-Identification via Orthogonal Fusion with Occlusion Handling [4.431087385310259]
排除は、個人再識別(ReID)における大きな課題の1つとして残されている。
本稿では,CNN と Transformer アーキテクチャを併用し,ロバストな特徴表現を生成する深層アンサンブルモデルを提案する。
論文 参考訳(メタデータ) (2024-03-29T18:38:59Z) - Density Adaptive Attention is All You Need: Robust Parameter-Efficient Fine-Tuning Across Multiple Modalities [0.9217021281095907]
DAAMは学習可能な平均と分散を、マルチヘッドフレームワークで実装されたアテンションメカニズムに統合する。
DAAMは、音声における感情認識、画像分類、テキスト分類など、様々なタスクにおいて優れた適応性と有効性を示す。
本稿では,DAAM法で学習したモデルの説明可能性を高めるための新しい学習基準であるImportance Factorを紹介する。
論文 参考訳(メタデータ) (2024-01-20T06:42:32Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
不確実性推定は、デプロイにおける機械学習システムの信頼性を強調する、広く研究されている方法である。
逐次および並列アンサンブル手法により,マルチモーダル設定におけるMLシステムの性能が向上した。
本研究では,不確かさを高く見積もるデータポイントに着目し,マルチモーダルセンシングのための不確実性認識促進手法を提案する。
論文 参考訳(メタデータ) (2021-04-21T18:28:13Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
クロスモダリティの人物再識別(cm-ReID)は、インテリジェントビデオ分析において難しいが重要な技術である。
モーダリティ共有型特徴伝達アルゴリズム (cm-SSFT) を提案し, モーダリティ共有型情報とモーダリティ固有特性の両方のポテンシャルについて検討する。
論文 参考訳(メタデータ) (2020-02-28T00:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。