論文の概要: Estimating Latent Demand of Shared Mobility through Censored Gaussian
Processes
- arxiv url: http://arxiv.org/abs/2001.07402v2
- Date: Mon, 17 Feb 2020 12:09:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 23:36:32.509519
- Title: Estimating Latent Demand of Shared Mobility through Censored Gaussian
Processes
- Title(参考訳): 補償ガウス過程による共有モビリティの潜在需要の推定
- Authors: Daniele Gammelli, Inon Peled, Filipe Rodrigues, Dario Pacino, Haci A.
Kurtaran, Francisco C. Pereira
- Abstract要約: 輸送需要は供給に大きく依存しており、特に可用性が制限される共有輸送サービスにおいてである。
観測された需要は利用可能な供給量よりも高くはならないため、歴史的輸送データは一般的に、真の根底にある需要パターンのバイアスのある、あるいは検閲されたバージョンを表す。
本稿では,検閲された可能性関数を考案した検閲対応需要モデリングの汎用手法を提案する。
- 参考スコア(独自算出の注目度): 11.695095006311176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transport demand is highly dependent on supply, especially for shared
transport services where availability is often limited. As observed demand
cannot be higher than available supply, historical transport data typically
represents a biased, or censored, version of the true underlying demand
pattern. Without explicitly accounting for this inherent distinction,
predictive models of demand would necessarily represent a biased version of
true demand, thus less effectively predicting the needs of service users. To
counter this problem, we propose a general method for censorship-aware demand
modeling, for which we devise a censored likelihood function. We apply this
method to the task of shared mobility demand prediction by incorporating the
censored likelihood within a Gaussian Process model, which can flexibly
approximate arbitrary functional forms. Experiments on artificial and
real-world datasets show how taking into account the limiting effect of supply
on demand is essential in the process of obtaining an unbiased predictive model
of user demand behavior.
- Abstract(参考訳): 輸送需要は、特に可用性が制限される共有輸送サービスにおいて、供給に大きく依存している。
観測された需要は利用可能な供給よりも高くはならないため、歴史的輸送データは一般に真の需要パターンの偏り、あるいは検閲されたバージョンを表す。
この固有の区別を明示的に考慮しなければ、需要予測モデルは必ずしも真の需要のバイアスのあるバージョンであり、サービスユーザのニーズを効果的に予測することができない。
この問題に対処するために,検閲された可能性関数を考案した検閲対応需要モデリングの汎用手法を提案する。
本手法は,任意の関数形式を柔軟に近似できるガウス過程モデルに検閲された確率を組み込むことにより,共有モビリティ需要予測のタスクに適用する。
人工的および実世界のデータセットの実験は、需要に対する供給の制限効果を考慮に入れることが、ユーザ要求行動の偏りのない予測モデルを得るプロセスにおいて不可欠であることを示す。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - End-to-End Demand Response Model Identification and Baseline Estimation
with Deep Learning [3.553493344868414]
本稿では,需要ベースラインとインセンティブに基づくエージェント要求応答モデルを同時に識別する,エンドツーエンドのディープラーニングフレームワークを提案する。
提案手法の有効性を,合成需要応答トレースと大規模実世界の需要応答データセットを用いた計算実験により実証する。
論文 参考訳(メタデータ) (2021-09-02T06:43:37Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
このようなリスク不変予測器の学習に重要な課題はショートカット学習である。
この課題に対処するために、フレキシブルで因果的なアプローチを提案する。
この因果的動機付けされた正規化スキームが堅牢な予測子を生み出すことを理論的および実証的に示す。
論文 参考訳(メタデータ) (2021-05-13T16:58:45Z) - Modeling Censored Mobility Demand through Quantile Regression Neural
Networks [21.528321119061694]
CQRNNは検閲無意識モデルとパラメトリック検閲モデルの両方よりも,意図した分布を推定できることを示す。
結果は、CQRNNは検閲なしモデルとパラメトリック検閲モデルの両方よりも意図された分布を推定できることを示している。
論文 参考訳(メタデータ) (2021-04-02T19:24:15Z) - Reframing demand forecasting: a two-fold approach for lumpy and
intermittent demand [0.9137554315375922]
その結果,競争需要予測は,需要発生予測と需要規模推定の2つのモデルによって得られることがわかった。
本研究は,需要イベントの発生予測において,グローバル分類モデルが最善の選択であることを示す。
欧州の自動車オリジナル機器メーカーの日頃の需要に対応する516年3年間の時系列からなる現実世界のデータに関するアプローチをテストしました。
論文 参考訳(メタデータ) (2021-03-23T17:57:40Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
ドロップアウトは、ディープニューラルネットワークのトレーニングプロセスを正規化するシンプルで効果的なモジュールとして実証されています。
単純でスケーラブルなサンプル依存型ドロップアウトモジュールとして,効率的な構造設計によるコンテキスト型ドロップアウトを提案する。
提案手法は,不確実性推定の精度と品質の両面において,ベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-06T19:30:32Z) - Generalized Multi-Output Gaussian Process Censored Regression [7.111443975103331]
本稿では、GPの非パラメトリックな柔軟性と、入力依存ノイズ条件下での相関出力からの情報を活用する能力を組み合わせたヘテロスセダスティック多出力ガウスプロセスモデルを提案する。
結果として、柔軟性を追加することで、潜在的に複雑な検閲ダイナミクスの下で、モデルが基盤となる非検閲プロセス(すなわち、真)をより正確に見積もることができるかが示される。
論文 参考訳(メタデータ) (2020-09-10T12:46:29Z) - Uncertainty Quantification for Demand Prediction in Contextual Dynamic
Pricing [20.828160401904697]
本研究では,需要関数に対する精度の高い信頼区間構築の問題について検討する。
偏りのあるアプローチを開発し、偏りのある推定器の正規性を保証する。
論文 参考訳(メタデータ) (2020-03-16T04:21:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。