論文の概要: Joint Learning of Instance and Semantic Segmentation for Robotic
Pick-and-Place with Heavy Occlusions in Clutter
- arxiv url: http://arxiv.org/abs/2001.07481v1
- Date: Tue, 21 Jan 2020 12:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:29:50.914399
- Title: Joint Learning of Instance and Semantic Segmentation for Robotic
Pick-and-Place with Heavy Occlusions in Clutter
- Title(参考訳): クラッタにおける重閉塞を有するロボットピック・アンド・プレイスの事例と意味的セグメンテーションの連成学習
- Authors: Kentaro Wada, Kei Okada, Masayuki Inaba
- Abstract要約: 可視・隠蔽領域マスクのインスタンスとセマンティックセグメンテーションを共同で学習する。
実験では,テストデータセット上でのインスタンスのみの学習を比較検討した。
また,2種類のロボットピック・アンド・プレイスタスクにジョイントラーニングモデルを適用した。
- 参考スコア(独自算出の注目度): 28.45734662893933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present joint learning of instance and semantic segmentation for visible
and occluded region masks. Sharing the feature extractor with instance
occlusion segmentation, we introduce semantic occlusion segmentation into the
instance segmentation model. This joint learning fuses the instance- and
image-level reasoning of the mask prediction on the different segmentation
tasks, which was missing in the previous work of learning instance segmentation
only (instance-only). In the experiments, we evaluated the proposed joint
learning comparing the instance-only learning on the test dataset. We also
applied the joint learning model to 2 different types of robotic pick-and-place
tasks (random and target picking) and evaluated its effectiveness to achieve
real-world robotic tasks.
- Abstract(参考訳): 可視・隠蔽領域マスクのインスタンスとセマンティックセグメンテーションを共同で学習する。
インスタンスのオクルージョンセグメンテーションと特徴抽出器を共有することにより,インスタンスセグメンテーションモデルに意味的オクルージョンセグメンテーションを導入する。
この共同学習は、前回の学習インスタンスのセグメンテーションのみ(インスタンスのみ)に欠けている異なるセグメンテーションタスクに対して、マスク予測のインスタンスレベルとイメージレベルの推論を融合させる。
実験では,テストデータセットにおけるインスタンスのみの学習を比較する共同学習について評価した。
また,2種類のロボットピック・アンド・プレイスタスク(ランダム・ターゲットピック)にジョイントラーニングモデルを適用し,実世界のロボットタスクを実現する上での有効性を評価した。
関連論文リスト
- Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
本稿では,任意の粒度でセグメンテーションと認識を可能にする汎用画像セグメンテーションモデルであるSemantic-SAMを紹介する。
複数のデータセットを3つの粒度に集約し、オブジェクトとパーツの分離した分類を導入する。
マルチグラニュラリティ機能を実現するために,各クリックで複数のレベルのマスクを生成できるマルチ選択学習方式を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:59:40Z) - Self-Supervised Instance Segmentation by Grasping [84.2469669256257]
我々は、画像の前後から把握対象をセグメント化するためのグリップセグメンテーションモデルを学習する。
セグメント化されたオブジェクトを使用して、元のシーンからオブジェクトを"カット"し、それらを新しいシーンに"ペースト"することで、インスタンスの監視を生成する。
本稿では,従来の画像サブトラクション手法と比較して,グリップセグメント化モデルにより,グリップオブジェクトをセグメント化する場合の誤差が5倍になることを示す。
論文 参考訳(メタデータ) (2023-05-10T16:51:36Z) - Self-Supervised Interactive Object Segmentation Through a
Singulation-and-Grasping Approach [9.029861710944704]
本稿では,新しいオブジェクトと対話し,各オブジェクトのトレーニングラベルを収集するロボット学習手法を提案する。
Singulation-and-Grasping(SaG)ポリシは、エンドツーエンドの強化学習を通じてトレーニングされる。
本システムは,シミュレートされた散文シーンにおいて,70%の歌唱成功率を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:01:36Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
我々は、未ラベルのシーン中心のデータから視覚表現を学習する問題に取り組む。
本研究では,データ駆動型セマンティックスロット,すなわちSlotConによる協調型セマンティックグルーピングと表現学習のためのコントラスト学習を提案する。
論文 参考訳(メタデータ) (2022-05-30T17:50:59Z) - Instance-Specific Feature Propagation for Referring Segmentation [28.58551450280675]
セグメンテーションの参照は、自然言語表現で示されるターゲットインスタンスのセグメンテーションマスクを生成することを目的としている。
本稿では,特徴伝搬により興味の対象を同時に検出し,きめ細かいセグメンテーションマスクを生成する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-26T07:08:14Z) - FreeSOLO: Learning to Segment Objects without Annotations [191.82134817449528]
我々は,単純なインスタンスセグメンテーションメソッドSOLO上に構築された自己教師型インスタンスセグメンテーションフレームワークであるFreeSOLOを紹介する。
また,本手法では,複雑なシーンからオブジェクトを教師なしで検出する,新たなローカライズ対応事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-24T16:31:44Z) - Iterative Learning for Instance Segmentation [0.0]
最先端のディープニューラルネットワークモデルは、このタスクでうまく機能するために、大量のラベル付きデータを必要とする。
本稿では,複数の類似したオブジェクトからなるデータセットのインスタンスの検出,セグメント化,アノテーション化が可能な反復学習およびアノテーション手法を提案する。
2つの異なるデータセットの実験は、視覚検査に関連する異なるアプリケーションにおけるアプローチの有効性を示している。
論文 参考訳(メタデータ) (2022-02-18T10:25:02Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
インスタンスカテゴリ"は、インスタンスの場所に応じて、インスタンス内の各ピクセルにカテゴリを割り当てる。
SOLO"は、強力なパフォーマンスを備えたインスタンスセグメンテーションのための、シンプルで、直接的で、高速なフレームワークです。
提案手法は, 高速化と精度の両面から, 実例分割の最先端結果を実現する。
論文 参考訳(メタデータ) (2021-06-30T09:56:54Z) - Learning Panoptic Segmentation from Instance Contours [9.347742071428918]
Panopticpixel は、背景 (stuff) とオブジェクト (things) のインスタンスをピクセルレベルで理解することを目的としている。
セマンティックセグメンテーション(レベル分類)とインスタンスセグメンテーションの別々のタスクを組み合わせて、単一の統合されたシーン理解タスクを構築する。
セマンティックセグメンテーションとインスタンス輪郭からインスタンスセグメンテーションを学習する完全畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-16T03:05:48Z) - Commonality-Parsing Network across Shape and Appearance for Partially
Supervised Instance Segmentation [71.59275788106622]
そこで本稿では,マスク付分類から新しい分類へ一般化可能な,クラス非依存の共通性について考察する。
本モデルでは,COCOデータセット上のサンプルセグメンテーションにおける部分教師付き設定と少数ショット設定の両方において,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-24T07:23:44Z) - Instance Segmentation of Visible and Occluded Regions for Finding and
Picking Target from a Pile of Objects [25.836334764387498]
本研究では,対象物体の発見・把握が可能な物体の山から対象物を選択するロボットシステムを提案する。
既存のインスタンスセグメンテーションモデルを新しいリルックアーキテクチャで拡張し、モデルがインスタンス間の関係を明示的に学習する。
また、画像合成により、人間のアノテーションを使わずに新しいオブジェクトを処理できるシステムを構築する。
論文 参考訳(メタデータ) (2020-01-21T12:28:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。