論文の概要: Self-Supervised Instance Segmentation by Grasping
- arxiv url: http://arxiv.org/abs/2305.06305v1
- Date: Wed, 10 May 2023 16:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 12:04:27.958342
- Title: Self-Supervised Instance Segmentation by Grasping
- Title(参考訳): グラフピングによる自己監督型インスタンスセグメンテーション
- Authors: YuXuan Liu, Xi Chen, Pieter Abbeel
- Abstract要約: 我々は、画像の前後から把握対象をセグメント化するためのグリップセグメンテーションモデルを学習する。
セグメント化されたオブジェクトを使用して、元のシーンからオブジェクトを"カット"し、それらを新しいシーンに"ペースト"することで、インスタンスの監視を生成する。
本稿では,従来の画像サブトラクション手法と比較して,グリップセグメント化モデルにより,グリップオブジェクトをセグメント化する場合の誤差が5倍になることを示す。
- 参考スコア(独自算出の注目度): 84.2469669256257
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Instance segmentation is a fundamental skill for many robotic applications.
We propose a self-supervised method that uses grasp interactions to collect
segmentation supervision for an instance segmentation model. When a robot
grasps an item, the mask of that grasped item can be inferred from the images
of the scene before and after the grasp. Leveraging this insight, we learn a
grasp segmentation model to segment the grasped object from before and after
grasp images. Such a model can segment grasped objects from thousands of grasp
interactions without costly human annotation. Using the segmented grasped
objects, we can "cut" objects from their original scenes and "paste" them into
new scenes to generate instance supervision. We show that our grasp
segmentation model provides a 5x error reduction when segmenting grasped
objects compared with traditional image subtraction approaches. Combined with
our "cut-and-paste" generation method, instance segmentation models trained
with our method achieve better performance than a model trained with 10x the
amount of labeled data. On a real robotic grasping system, our instance
segmentation model reduces the rate of grasp errors by over 3x compared to an
image subtraction baseline.
- Abstract(参考訳): インスタンスセグメンテーションは多くのロボットアプリケーションにとって基本的なスキルである。
本稿では,インスタンスセグメンテーションモデルのセグメンテーション監督を収集するために,把持インタラクションを用いた自己教師あり手法を提案する。
ロボットがアイテムをつかむと、その把握されたアイテムのマスクは、掴む前後のシーンの画像から推測することができる。
この知見を活かして,把握対象を画像の前後から分割するための把握セグメンテーションモデルを学習する。
このようなモデルは、コストのかかる人間のアノテーションなしに、何千もの把持相互作用から把持対象をセグメント化することができる。
セグメント化された把握されたオブジェクトを使用して、元のシーンからオブジェクトを"カット"し、それらを新しいシーンに"ペースト"することで、インスタンスの監視を生成する。
本稿では,従来の画像サブトラクション手法と比較して,グリップ分割モデルにより,グリップオブジェクトのセグメント化時の誤差が5倍になることを示す。
カット・アンド・ペースト(cut-and-paste)生成法と組み合わせたインスタンス分割モデルでは,ラベル付きデータの10倍の精度でトレーニングされたモデルよりも優れた性能が得られる。
実ロボット把持システムにおいて,本事例分割モデルは,画像サブトラクションベースラインと比較して,把持誤り率を3倍以上低減する。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - Synthetic Instance Segmentation from Semantic Image Segmentation Masks [15.477053085267404]
我々は、Synthetic Instance(SISeg)と呼ばれる新しいパラダイムを提案する。
SISegインスタンスセグメンテーションの結果は、既存のセマンティックセグメンテーションモデルによって生成されたイメージマスクを活用する。
言い換えれば、提案モデルは余分な人力や高い計算コストを必要としない。
論文 参考訳(メタデータ) (2023-08-02T05:13:02Z) - Towards Open-World Segmentation of Parts [16.056921233445784]
本稿では,クラスに依存しない部分分割タスクを提案する。
パートクラスなしでトレーニングされたモデルは、トレーニング時に見えない部分のローカライズとオブジェクトへのセグメンテーションを改善することができる、と私たちは主張する。
当社のアプローチでは,オープンワールドのパートセグメンテーションに向けた重要なステップとして,注目すべきかつ一貫した成果をあげています。
論文 参考訳(メタデータ) (2023-05-26T10:34:58Z) - Foreground-Background Separation through Concept Distillation from
Generative Image Foundation Models [6.408114351192012]
本稿では, 簡単なテキスト記述から, 一般的な前景-背景セグメンテーションモデルの生成を可能にする新しい手法を提案する。
本研究では,4つの異なる物体(人間,犬,車,鳥)を分割する作業と,医療画像解析におけるユースケースシナリオについて述べる。
論文 参考訳(メタデータ) (2022-12-29T13:51:54Z) - A Generalist Framework for Panoptic Segmentation of Images and Videos [61.61453194912186]
我々は,タスクの帰納バイアスに頼ることなく,離散的なデータ生成問題としてパノプティクスセグメンテーションを定式化する。
単純な構造と一般的な損失関数を持つパノスコープマスクをモデル化するための拡散モデルを提案する。
本手法は,動画を(ストリーミング環境で)モデル化し,オブジェクトのインスタンスを自動的に追跡することを学ぶ。
論文 参考訳(メタデータ) (2022-10-12T16:18:25Z) - Learning with Free Object Segments for Long-Tailed Instance Segmentation [15.563842274862314]
インスタンスセグメントの豊富さは、オブジェクト中心のIm-ageから自由に得ることができる。
これらの知見に触発されて,これらの「自由」オブジェクトセグメントの抽出と活用を目的としたFreeSegを提案する。
FreeSegは、まれなオブジェクトカテゴリのセグメンテーションにおける最先端の精度を達成する。
論文 参考訳(メタデータ) (2022-02-22T19:06:16Z) - The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [59.12750806239545]
動画は移動成分によって同じシーンを異なる視点で見ることができ、適切な領域分割と領域フローは相互のビュー合成を可能にする。
モデルでは,1枚の画像に対して特徴に基づく領域分割を出力する出現経路と,1枚の画像に対して動作特徴を出力する動き経路の2つの経路から開始する。
セグメントフローに基づく視線合成誤差を最小限に抑えるためにモデルを訓練することにより、我々の外観経路と運動経路は、それぞれ低レベルのエッジや光フローから構築することなく、領域のセグメンテーションとフロー推定を自動的に学習する。
論文 参考訳(メタデータ) (2021-11-11T18:59:11Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
インスタンスカテゴリ"は、インスタンスの場所に応じて、インスタンス内の各ピクセルにカテゴリを割り当てる。
SOLO"は、強力なパフォーマンスを備えたインスタンスセグメンテーションのための、シンプルで、直接的で、高速なフレームワークです。
提案手法は, 高速化と精度の両面から, 実例分割の最先端結果を実現する。
論文 参考訳(メタデータ) (2021-06-30T09:56:54Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
我々は,コヒーレントなシーン全体を移動しているように見えるシーンの画像の一部を検出し,分割するための教師なしの手法について述べる。
提案手法はまず,セグメント間の相互情報を最小化することにより,運動場を分割する。
セグメントを使用してオブジェクトモデルを学習し、静的なイメージの検出に使用することができる。
論文 参考訳(メタデータ) (2020-08-16T22:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。