論文の概要: Shared task: Lexical semantic change detection in German (Student
Project Report)
- arxiv url: http://arxiv.org/abs/2001.07786v2
- Date: Mon, 11 May 2020 20:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:00:36.010585
- Title: Shared task: Lexical semantic change detection in German (Student
Project Report)
- Title(参考訳): 共有課題:ドイツ語における語彙意味変化検出(学生プロジェクト報告)
- Authors: Adnan Ahmad, Kiflom Desta, Fabian Lang and Dominik Schlechtweg
- Abstract要約: Schlechtwegらによって提案された評価枠組みに基づき、ドイツ語における非教師なし語彙意味変化検出(LSCD)に関する最初の共有タスクの結果を示す。
- 参考スコア(独自算出の注目度): 6.971891445484366
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent NLP architectures have illustrated in various ways how semantic change
can be captured across time and domains. However, in terms of evaluation there
is a lack of benchmarks to compare the performance of these systems against
each other. We present the results of the first shared task on unsupervised
lexical semantic change detection (LSCD) in German based on the evaluation
framework proposed by Schlechtweg et al. (2019).
- Abstract(参考訳): 最近のnlpアーキテクチャは、時間とドメイン間で意味的変化を捉える方法を様々な方法で示しています。
しかし、評価面では、これらのシステムの性能を互いに比較するベンチマークが欠如している。
本研究は,Schlechtweg et al. (2019) による評価枠組みに基づいて,ドイツ語における非教師なし語彙意味変化検出(LSCD)に関する最初の共有タスクの結果を示す。
関連論文リスト
- A Systematic Comparison of Contextualized Word Embeddings for Lexical
Semantic Change [0.696194614504832]
我々は、勾配変化検出(GCD)のための最先端モデルとアプローチを評価する。
我々はLCC問題をWord-in-Context(WiC)タスクとWord Sense Injection(WSI)タスクに分解し、これらの異なるレベルのモデルと比較する。
i) APDはGCDの他のアプローチよりも優れており、 (ii) XL-LEXEMEはGPT-4と同等でありながら、WiC、WSI、GCDの他の文脈モデルよりも優れています。
論文 参考訳(メタデータ) (2024-02-19T10:04:59Z) - Graph-based Clustering for Detecting Semantic Change Across Time and
Languages [10.058655884092094]
本稿では,高頻度・低周波両方の単語知覚におけるニュアンス変化を時間的・言語的に捉えたグラフベースのクラスタリング手法を提案する。
提案手法は,4言語にわたるSemEval 2020バイナリ分類タスクにおいて,従来のアプローチを大幅に上回っている。
論文 参考訳(メタデータ) (2024-02-01T21:27:19Z) - End-to-End Evaluation for Low-Latency Simultaneous Speech Translation [55.525125193856084]
本稿では,低遅延音声翻訳の様々な側面を現実的な条件下で実行し,評価するための第1の枠組みを提案する。
これには、オーディオのセグメンテーションと、異なるコンポーネントの実行時間が含まれる。
また、このフレームワークを用いて低遅延音声翻訳の異なるアプローチを比較する。
論文 参考訳(メタデータ) (2023-08-07T09:06:20Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
意味的差異をトークンレベルの回帰タスクとして認識する。
マスク付き言語モデルに依存する3つの教師なしアプローチについて検討する。
その結果,単語アライメントと文レベルのコントラスト学習に基づくアプローチは,ゴールドラベルと強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-05-22T17:58:04Z) - Fine-Tuning Deteriorates General Textual Out-of-Distribution Detection
by Distorting Task-Agnostic Features [14.325845491628087]
アウト・オブ・ディストリビューション(OOD)入力は、自然言語処理(NLP)モデルの安全なデプロイに不可欠である。
本研究は,意味的および非意味的変化を検出するための主流テキストOOD検出手法を評価するための第一歩である。
本稿では,タスク非依存およびタスク特化表現から得られた信頼スコアを統合する,GNOMEという単純なOODスコアを提案する。
論文 参考訳(メタデータ) (2023-01-30T08:01:13Z) - Retrofitting Multilingual Sentence Embeddings with Abstract Meaning
Representation [70.58243648754507]
抽象的意味表現(AMR)を用いた既存の多言語文の埋め込みを改善する新しい手法を提案する。
原文入力と比較すると、AMRは文の中核概念と関係を明確かつ曖昧に表す構造的意味表現である。
実験結果から,多言語文をAMRで埋め込むと,意味的類似性と伝達タスクの両方において,最先端の性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-10-18T11:37:36Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Unsupervised Word Translation Pairing using Refinement based Point Set
Registration [8.568050813210823]
単語埋め込みの言語間アライメントは、言語間の知識伝達において重要な役割を果たす。
現在の教師なしのアプローチは、言語にまたがる単語埋め込み空間の幾何学的構造における類似性に依存している。
本稿では,バイリンガル単語の共有ベクトル空間への埋め込みを教師なしでマッピングするBioSpereを提案する。
論文 参考訳(メタデータ) (2020-11-26T09:51:29Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
単語の意味を正確にモデル化する能力を評価するために,Word-in-Context データセット (WiC) を提案する。
我々は、XL-WiCという大規模なマルチ言語ベンチマークを提案し、12の新しい言語でゴールドスタンダードを特徴付けました。
実験結果から、ターゲット言語にタグ付けされたインスタンスが存在しない場合でも、英語データのみにトレーニングされたモデルは、競争力のあるパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T15:32:00Z) - SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection [10.606357227329822]
評価は、現在、レキシカルセマンティック・チェンジ検出において最も差し迫った問題である。
コミュニティにとって金の基準は存在せず、進歩を妨げている。
このギャップに対処する最初の共有タスクの結果を示す。
論文 参考訳(メタデータ) (2020-07-22T14:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。