Depth Estimation and Image Restoration by Deep Learning from Defocused
Images
- URL: http://arxiv.org/abs/2302.10730v2
- Date: Thu, 27 Jul 2023 19:29:15 GMT
- Title: Depth Estimation and Image Restoration by Deep Learning from Defocused
Images
- Authors: Saqib Nazir, Lorenzo Vaquero, Manuel Mucientes, V\'ictor M. Brea,
Daniela Coltuc
- Abstract summary: Two-headed Depth Estimation and Deblurring Network (2HDED:NET) extends a conventional Depth from Defocus (DFD) networks with a deblurring branch that shares the same encoder as the depth branch.
The proposed method has been successfully tested on two benchmarks, one for indoor and the other for outdoor scenes: NYU-v2 and Make3D.
- Score: 2.6599014990168834
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Monocular depth estimation and image deblurring are two fundamental tasks in
computer vision, given their crucial role in understanding 3D scenes.
Performing any of them by relying on a single image is an ill-posed problem.
The recent advances in the field of Deep Convolutional Neural Networks (DNNs)
have revolutionized many tasks in computer vision, including depth estimation
and image deblurring. When it comes to using defocused images, the depth
estimation and the recovery of the All-in-Focus (Aif) image become related
problems due to defocus physics. Despite this, most of the existing models
treat them separately. There are, however, recent models that solve these
problems simultaneously by concatenating two networks in a sequence to first
estimate the depth or defocus map and then reconstruct the focused image based
on it. We propose a DNN that solves the depth estimation and image deblurring
in parallel. Our Two-headed Depth Estimation and Deblurring Network (2HDED:NET)
extends a conventional Depth from Defocus (DFD) networks with a deblurring
branch that shares the same encoder as the depth branch. The proposed method
has been successfully tested on two benchmarks, one for indoor and the other
for outdoor scenes: NYU-v2 and Make3D. Extensive experiments with 2HDED:NET on
these benchmarks have demonstrated superior or close performances to those of
the state-of-the-art models for depth estimation and image deblurring.
Related papers
- Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus [14.354405484663285]
We propose a self-supervised framework based on 3D Gaussian splatting and Siamese networks for depth estimation in 3D geometry.
The proposed framework has been validated on both artificially synthesized and real blurred datasets.
arXiv Detail & Related papers (2024-09-18T21:36:37Z) - Multi-task Learning for Monocular Depth and Defocus Estimations with
Real Images [3.682618267671887]
Most existing methods treat depth estimation and defocus estimation as two separate tasks, ignoring the strong connection between them.
We propose a multi-task learning network consisting of an encoder with two decoders to estimate the depth and defocus map from a single focused image.
Our depth and defocus estimations achieve significantly better performance than other state-of-art algorithms.
arXiv Detail & Related papers (2022-08-21T08:59:56Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
We propose a novel weakly-supervised framework to train a monocular depth estimation network.
The proposed framework is composed of a sharing weight monocular depth estimation network and a depth reconstruction network for distillation.
Experimental results demonstrate that our method achieves superior performance than unsupervised and semi-supervised learning based schemes.
arXiv Detail & Related papers (2021-09-23T18:04:12Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
We introduce depth information into DBD for the first time.
In detail, we learn the defocus blur from ground truth and the depth distilled from a well-trained depth estimation network.
Our approach outperforms 11 other state-of-the-art methods on two popular datasets.
arXiv Detail & Related papers (2020-07-16T04:58:09Z) - Guiding Monocular Depth Estimation Using Depth-Attention Volume [38.92495189498365]
We propose guiding depth estimation to favor planar structures that are ubiquitous especially in indoor environments.
Experiments on two popular indoor datasets, NYU-Depth-v2 and ScanNet, show that our method achieves state-of-the-art depth estimation results.
arXiv Detail & Related papers (2020-04-06T15:45:52Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.