Floquet prethermalization in a Bose-Hubbard system
- URL: http://arxiv.org/abs/2001.08226v2
- Date: Mon, 18 May 2020 08:28:00 GMT
- Title: Floquet prethermalization in a Bose-Hubbard system
- Authors: Antonio Rubio-Abadal, Matteo Ippoliti, Simon Hollerith, David Wei, Jun
Rui, S. L. Sondhi, Vedika Khemani, Christian Gross, Immanuel Bloch
- Abstract summary: We experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model.
Our results show experimental evidence of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Periodic driving has emerged as a powerful tool in the quest to engineer new
and exotic quantum phases. While driven many-body systems are generically
expected to absorb energy indefinitely and reach an infinite-temperature state,
the rate of heating can be exponentially suppressed when the drive frequency is
large compared to the local energy scales of the system -- leading to
long-lived 'prethermal' regimes. In this work, we experimentally study a
bosonic cloud of ultracold atoms in a driven optical lattice and identify such
a prethermal regime in the Bose-Hubbard model. By measuring the energy
absorption of the cloud as the driving frequency is increased, we observe an
exponential-in-frequency reduction of the heating rate persisting over more
than 2 orders of magnitude. The tunability of the lattice potentials allows us
to explore one- and two-dimensional systems in a range of different interacting
regimes. Alongside the exponential decrease, the dependence of the heating rate
on the frequency displays features characteristic of the phase diagram of the
Bose-Hubbard model, whose understanding is additionally supported by numerical
simulations in one dimension. Our results show experimental evidence of the
phenomenon of Floquet prethermalization, and provide insight into the
characterization of heating for driven bosonic systems.
Related papers
- Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Dynamical phase and quantum heat at fractional frequencies [0.0]
We show a genuine quantum feature of heat: the power emitted by a qubit into a reservoir under continuous driving shows peaks as a function of frequency $f$.
This quantum heat is expected to play a crucial role in the performance of driven thermal devices such as quantum heat engines and refrigerators.
arXiv Detail & Related papers (2022-07-15T17:45:58Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Heating Rates under Fast Periodic Driving beyond Linear Response [0.0]
We provide a formula on the heating rate under fast and strong periodic driving in classical and quantum many-body systems.
It is confirmed for specific classical and quantum models that the second-order truncation of the high-frequency expansion yields quantitatively accurate heating rates.
arXiv Detail & Related papers (2021-07-27T04:17:27Z) - Absence of heating in a uniform Fermi gas created by periodic driving [0.0]
Floquet engineering can be employed to a strongly interacting Fermi gas held in a flat box-like potential without inducing excessive heating.
We measure the pair-condensation fraction at unitarity and the contact parameter across the BEC-BCS crossover.
Our results are promising for future exploration of exotic many-body phases of a bulk strongly-interacting Fermi gas with dynamically engineered Hamiltonians.
arXiv Detail & Related papers (2021-02-18T17:48:35Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Statistical Floquet prethermalization of the Bose-Hubbard model [0.0]
manipulation of many-body systems often involves time-dependent forces that cause unwanted heating.
For quantum spin systems with bounded spectra, it was shown rigorously that the heating rate is exponentially small in the driving frequency.
Emergence of heating has also been observed in an experiment with ultracold atoms, realizing a periodically driven Bose-Hubbard model.
arXiv Detail & Related papers (2020-05-14T18:00:06Z) - Nonadiabatic energy fluctuations of scale-invariant quantum systems in a
time-dependent trap [0.0]
We consider the nonadiabatic energy fluctuations of a many-body system in a time-dependent harmonic trap.
Our results pave the way to the experimental study of nonadiabatic energy fluctuations in driven quantum fluids.
arXiv Detail & Related papers (2020-04-09T14:49:31Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.