Statistical Floquet prethermalization of the Bose-Hubbard model
- URL: http://arxiv.org/abs/2005.07207v5
- Date: Thu, 27 May 2021 08:28:50 GMT
- Title: Statistical Floquet prethermalization of the Bose-Hubbard model
- Authors: Emanuele G. Dalla Torre, David Dentelski
- Abstract summary: manipulation of many-body systems often involves time-dependent forces that cause unwanted heating.
For quantum spin systems with bounded spectra, it was shown rigorously that the heating rate is exponentially small in the driving frequency.
Emergence of heating has also been observed in an experiment with ultracold atoms, realizing a periodically driven Bose-Hubbard model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The manipulation of many-body systems often involves time-dependent forces
that cause unwanted heating. One strategy to suppress heating is to use
time-periodic (Floquet) forces at large driving frequencies. For quantum spin
systems with bounded spectra, it was shown rigorously that the heating rate is
exponentially small in the driving frequency. Recently, the exponential
suppression of heating has also been observed in an experiment with ultracold
atoms, realizing a periodically driven Bose-Hubbard model. This model has an
unbounded spectrum and, hence, is beyond the reach of previous theoretical
approaches. Here, we study this model with two semiclassical approaches valid,
respectively, at large and weak interaction strengths. In both limits, we
compute the heating rates by studying the statistical probability to encounter
a many-body resonance, and obtain a quantitative agreement with the exact
diagonalization of the quantum model. Our approach demonstrates the relevance
of statistical arguments to Floquet perthermalization of interacting many-body
quantum systems.
Related papers
- A novel scheme for modelling dissipation or thermalization in open quantum systems [0.0]
We introduce a novel method for investigating dissipation (gain) and thermalization in an open quantum system.
To demonstrate the efficiency and significance of the method, we apply it to some ubiquitous open quantum systems.
arXiv Detail & Related papers (2024-04-16T05:20:30Z) - Periodically and quasiperiodically driven-anisotropic Dicke model [0.0]
We analyze the anisotropic Dicke model in the presence of a periodic drive and under a quasiperiodic drive.
We show that under a quasiperiodic Fibonacci (Thue-Morse) drive, the system features a prethermal plateau that increases as an exponential with the driving frequency before heating to an infinite-temperature state.
Surprisingly, this value does not always approach the infinite-temperature state monotonically as the frequency of the periodic drive decreases.
arXiv Detail & Related papers (2023-06-29T09:44:52Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Heat transport in overdamped quantum systems [0.0]
We show how to evaluate both contributions by taking advantage of the time scale separation associated with the overdamped regime.
We find that non-trivial quantum corrections survive even when the temperatures are high compared to the frequency scale relevant for the overdamped dynamics of the system.
arXiv Detail & Related papers (2020-09-02T08:55:17Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Floquet prethermalization in a Bose-Hubbard system [0.0]
We experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model.
Our results show experimental evidence of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
arXiv Detail & Related papers (2020-01-22T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.