論文の概要: Observer variation-aware medical image segmentation by combining deep
learning and surrogate-assisted genetic algorithms
- arxiv url: http://arxiv.org/abs/2001.08552v1
- Date: Thu, 23 Jan 2020 14:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 09:53:04.470980
- Title: Observer variation-aware medical image segmentation by combining deep
learning and surrogate-assisted genetic algorithms
- Title(参考訳): 深層学習と代理支援遺伝的アルゴリズムを組み合わせた観測者変動を考慮した医用画像分割
- Authors: Arkadiy Dushatskiy, Adri\"enne M. Mendrik, Peter A. N. Bosman, Tanja
Alderliesten
- Abstract要約: セグメンテーションの異なるスタイルを模倣できるアプローチを提案する。
我々のアプローチは、全データでトレーニングされた1つのネットワークと比較して、Diceおよび表面Dice係数の最大23%の改善を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has recently been great progress in automatic segmentation of medical
images with deep learning algorithms. In most works observer variation is
acknowledged to be a problem as it makes training data heterogeneous but so far
no attempts have been made to explicitly capture this variation. Here, we
propose an approach capable of mimicking different styles of segmentation,
which potentially can improve quality and clinical acceptance of automatic
segmentation methods. In this work, instead of training one neural network on
all available data, we train several neural networks on subgroups of data
belonging to different segmentation variations separately. Because a priori it
may be unclear what styles of segmentation exist in the data and because
different styles do not necessarily map one-on-one to different observers, the
subgroups should be automatically determined. We achieve this by searching for
the best data partition with a genetic algorithm. Therefore, each network can
learn a specific style of segmentation from grouped training data. We provide
proof of principle results for open-sourced prostate segmentation MRI data with
simulated observer variations. Our approach provides an improvement of up to
23% (depending on simulated variations) in terms of Dice and surface Dice
coefficients compared to one network trained on all data.
- Abstract(参考訳): 近年,深層学習アルゴリズムを用いた医用画像の自動セグメンテーションが大きな進歩を遂げている。
ほとんどの作業において、オブザーバ変動はトレーニングデータを不均一にするので問題視されているが、今のところこの変動を明示的に捉える試みは行われていない。
本稿では, セグメンテーションの異なるスタイルを模倣し, 自動セグメンテーション法の品質と臨床受容性を向上する手法を提案する。
本研究では、利用可能なすべてのデータに対して1つのニューラルネットワークをトレーニングする代わりに、異なるセグメンテーションに属するデータのサブグループで複数のニューラルネットワークを個別にトレーニングする。
データにどの形式のセグメンテーションが存在するのか、また、異なるスタイルが必ずしも1対1で異なるオブザーバにマップするとは限らないため、サブグループを自動的に決定する必要がある。
遺伝的アルゴリズムを用いて最適なデータ分割を探すことでこれを実現できる。
そのため、各ネットワークは、グループ化されたトレーニングデータから特定のセグメンテーションのスタイルを学ぶことができる。
実測値の変動を模擬したオープンソースの前立腺分割MRIデータに対する原理的結果の証明を行う。
提案手法は,全データでトレーニングした1つのネットワークと比較して,Diceおよび表面Dice係数の最大23%の改善を実現している。
関連論文リスト
- Multi-Domain Data Aggregation for Axon and Myelin Segmentation in Histology Images [0.5825410941577593]
組織像における軸索とミエリンの性質の定量化は、神経変性疾患による微細構造変化に関する有用な情報を提供することができる。
ディープラーニングの進歩により、このタスクは最小限のオーバーヘッドで迅速かつ信頼性が高くなっていますが、ある研究グループによってトレーニングされたディープラーニングモデルは、他のグループによって利用されることがほとんどありません。
研究者がワークフローを円滑に実行し、加速するためにAIを利用できるようにする必要があるが、公開モデルは不十分で、メンテナンスが不十分である。
我々のアプローチは、複数の画像モダリティからのデータを集約して、アクソンとミエリンセグメンテーションのためのオープンソースで耐久性のあるツールを作成することである。
論文 参考訳(メタデータ) (2024-09-17T20:47:32Z) - Explainable Semantic Medical Image Segmentation with Style [7.074258860680265]
ラベル付きデータのみを限定して一般化可能なセグメンテーションを実現するための,完全教師付き生成フレームワークを提案する。
提案手法は,エンド・ツー・エンドの対角訓練を取り入れたセグメンテーション・タスク駆動型識別器と組み合わせた医用画像スタイルを作成する。
完全セマンティックで公開可能なペルビウスデータセットの実験では、我々の手法は他の最先端の手法よりも、シフトに対してより一般化可能であることが示された。
論文 参考訳(メタデータ) (2023-03-10T04:34:51Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Data variation-aware medical image segmentation [0.0]
我々は,この領域におけるこれまでの作業を改善するアプローチを提案する。
前立腺分画によるCTスキャンの実際の臨床データセットを用いた実験では,Diceおよび表面Dice係数の面で,いくつかのパーセンテージが向上した。
論文 参考訳(メタデータ) (2022-02-24T13:35:34Z) - Deep ensembles in bioimage segmentation [74.01883650587321]
本研究では,畳み込みニューラルネットワーク(CNN)のアンサンブルを提案する。
アンサンブル法では、多くの異なるモデルが訓練され、分類に使用され、アンサンブルは単一分類器の出力を集約する。
提案するアンサンブルは,DeepLabV3+とHarDNet環境を用いて,異なるバックボーンネットワークを組み合わせることで実現されている。
論文 参考訳(メタデータ) (2021-12-24T05:54:21Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Embracing the Disharmony in Heterogeneous Medical Data [12.739380441313022]
医療画像データの不均一性は、しばしば機械学習の文脈でドメイン不変性を用いて取り組まれる。
本論文は異種性を受け入れ,マルチタスク学習問題として扱う。
提案手法は,主分類タスクにおけるデータセット間の分類精度を5~30%向上することを示す。
論文 参考訳(メタデータ) (2021-03-23T21:36:39Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。