論文の概要: Explainable Semantic Medical Image Segmentation with Style
- arxiv url: http://arxiv.org/abs/2303.05696v1
- Date: Fri, 10 Mar 2023 04:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 16:07:23.076666
- Title: Explainable Semantic Medical Image Segmentation with Style
- Title(参考訳): スタイルによる説明可能な意味的医用画像セグメンテーション
- Authors: Wei Dai, Siyu Liu, Craig B. Engstrom, Shekhar S. Chandra
- Abstract要約: ラベル付きデータのみを限定して一般化可能なセグメンテーションを実現するための,完全教師付き生成フレームワークを提案する。
提案手法は,エンド・ツー・エンドの対角訓練を取り入れたセグメンテーション・タスク駆動型識別器と組み合わせた医用画像スタイルを作成する。
完全セマンティックで公開可能なペルビウスデータセットの実験では、我々の手法は他の最先端の手法よりも、シフトに対してより一般化可能であることが示された。
- 参考スコア(独自算出の注目度): 7.074258860680265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic medical image segmentation using deep learning has recently achieved
high accuracy, making it appealing to clinical problems such as radiation
therapy. However, the lack of high-quality semantically labelled data remains a
challenge leading to model brittleness to small shifts to input data. Most
works require extra data for semi-supervised learning and lack the
interpretability of the boundaries of the training data distribution during
training, which is essential for model deployment in clinical practice. We
propose a fully supervised generative framework that can achieve generalisable
segmentation with only limited labelled data by simultaneously constructing an
explorable manifold during training. The proposed approach creates medical
image style paired with a segmentation task driven discriminator incorporating
end-to-end adversarial training. The discriminator is generalised to small
domain shifts as much as permissible by the training data, and the generator
automatically diversifies the training samples using a manifold of input
features learnt during segmentation. All the while, the discriminator guides
the manifold learning by supervising the semantic content and fine-grained
features separately during the image diversification. After training,
visualisation of the learnt manifold from the generator is available to
interpret the model limits. Experiments on a fully semantic, publicly available
pelvis dataset demonstrated that our method is more generalisable to shifts
than other state-of-the-art methods while being more explainable using an
explorable manifold.
- Abstract(参考訳): 近年,深層学習を用いたセマンティック医用画像のセグメンテーションの精度が向上し,放射線治療などの臨床問題にアピールしている。
しかし、高品質なセマンティックラベル付きデータの欠如は、入力データへの小さなシフトへの脆さのモデル化に繋がる課題である。
ほとんどの研究は、半教師付き学習のために余分なデータを必要とし、臨床実践においてモデル展開に不可欠である訓練中のトレーニングデータ分布の境界の解釈性に欠ける。
本稿では,学習中に探索可能な多様体を同時に構築することにより,ラベル付きデータのみを限定した一般化可能なセグメンテーションを実現するための完全教師付き生成フレームワークを提案する。
提案手法は,エンド・ツー・エンドの対向訓練を組み込んだセグメンテーションタスク駆動型判別器と組み合わせた医用画像スタイルを作成する。
判別器は、トレーニングデータで許容できる限り小さなドメインシフトに一般化され、セグメンテーション中に学習した入力特徴の多様体を用いて、自動的にトレーニングサンプルを分散する。
その間、判別器は、画像の多様化の間、意味的内容と細かな特徴を別々に監督することにより、多様体学習をガイドする。
トレーニング後、ジェネレータから学習多様体を可視化することで、モデルの限界を解釈することができる。
完全セマンティックで公開可能なペルビウスデータセットの実験では、探索可能な多様体を用いてより説明可能でありながら、我々の手法が他の最先端手法よりも一般化可能であることを示した。
関連論文リスト
- A Classifier-Free Incremental Learning Framework for Scalable Medical Image Segmentation [6.591403935303867]
本稿では,単一分類器のないネットワークにおいて,可変数のクラスをセグメント化できる新しいセグメンテーションパラダイムを提案する。
このネットワークは、コントラスト学習を用いて訓練され、簡単な解釈を容易にする識別的特徴表現を生成する。
統合ネットワーク内での様々なクラス数処理における本手法の柔軟性とその漸進学習能力について述べる。
論文 参考訳(メタデータ) (2024-05-25T19:05:07Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
教師付き学習法は、十分な量のラベル付きデータを入力した場合に優れた性能を達成する。
このようなラベルは一般的に、非常に時間がかかり、エラーが発生し、製造コストがかかる。
半教師付き学習アプローチはラベル付きデータとラベルなしデータの両方を活用する。
論文 参考訳(メタデータ) (2024-04-02T09:31:06Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
大規模な注釈付きデータセットの必要性を緩和する最近の試みは、数ショットの学習パラダイムの下でトレーニング戦略を開発した。
セマンティックセグメンテーションのための新しい数発の学習フレームワークを提案し,各エピソードでラベルのない画像も利用できるようにした。
エピソードトレーニングにおけるラベルなしのサロゲートタスクを含めると、より強力な特徴表現がもたらされることを示す。
論文 参考訳(メタデータ) (2020-03-18T20:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。