Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2001.05834v2
- Date: Tue, 28 Jan 2020 10:21:08 GMT
- Title: Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks
- Authors: Georg Hille and Johannes Steffen and Max D\"unnwald and Mathias Becker
and Sylvia Saalfeld and Klaus T\"onnies
- Abstract summary: This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study's objective was to segment spinal metastases in diagnostic MR
images using a deep learning-based approach. Segmentation of such lesions can
present a pivotal step towards enhanced therapy planning and validation, as
well as intervention support during minimally invasive and image-guided
surgeries like radiofrequency ablations. For this purpose, we used a U-Net like
architecture trained with 40 clinical cases including both, lytic and sclerotic
lesion types and various MR sequences. Our proposed method was evaluated with
regards to various factors influencing the segmentation quality, e.g. the used
MR sequences and the input dimension. We quantitatively assessed our
experiments using Dice coefficients, sensitivity and specificity rates.
Compared to expertly annotated lesion segmentations, the experiments yielded
promising results with average Dice scores up to 77.6% and mean sensitivity
rates up to 78.9%. To our best knowledge, our proposed study is one of the
first to tackle this particular issue, which limits direct comparability with
related works. In respect to similar deep learning-based lesion segmentations,
e.g. in liver MR images or spinal CT images, our experiments showed similar or
in some respects superior segmentation quality. Overall, our automatic approach
can provide almost expert-like segmentation accuracy in this challenging and
ambitious task.
Related papers
- Segmentation of Mental Foramen in Orthopantomographs: A Deep Learning Approach [1.9193578733126382]
This study aims to accelerate dental procedures, elevating patient care and healthcare efficiency in dentistry.
This research used Deep Learning methods to accurately detect and segment the Mental Foramen from panoramic radiograph images.
arXiv Detail & Related papers (2024-08-08T21:40:06Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
This work presents a weakly supervised approach to segment anomalies in 2D magnetic resonance images.
We train a generative adversarial network (GAN) that converts cancerous images to healthy variants.
Non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion.
arXiv Detail & Related papers (2022-11-10T00:04:46Z) - Joint Liver and Hepatic Lesion Segmentation in MRI using a Hybrid CNN
with Transformer Layers [2.055026516354464]
This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path.
With Dice scores of averaged 98+-2% for liver and 81+-28% lesion segmentation on the MRI dataset and 97+-2% and 79+-25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation.
arXiv Detail & Related papers (2022-01-26T14:52:23Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Weakly Supervised Lesion Co-segmentation on CT Scans [18.58056402884405]
We propose a weakly-supervised co-segmentation model that first generates pseudo-masks from the RECIST slices.
We then use these as training labels for an attention-based convolutional neural network capable of segmenting common lesions from a pair of CT scans.
arXiv Detail & Related papers (2020-01-24T19:39:33Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.