Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment
- URL: http://arxiv.org/abs/2001.08728v1
- Date: Thu, 23 Jan 2020 18:41:21 GMT
- Title: Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment
- Authors: Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu
- Abstract summary: We introduce two coordinated reasoning methods, i.e., the Easy-to-Hard decoding strategy and joint entity alignment algorithm.
Our model achieves the state-of-the-art performance and our reasoning methods can also significantly improve existing baselines.
- Score: 74.0482641714311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing entity alignment methods mainly vary on the choices of encoding the
knowledge graph, but they typically use the same decoding method, which
independently chooses the local optimal match for each source entity. This
decoding method may not only cause the "many-to-one" problem but also neglect
the coordinated nature of this task, that is, each alignment decision may
highly correlate to the other decisions. In this paper, we introduce two
coordinated reasoning methods, i.e., the Easy-to-Hard decoding strategy and
joint entity alignment algorithm. Specifically, the Easy-to-Hard strategy first
retrieves the model-confident alignments from the predicted results and then
incorporates them as additional knowledge to resolve the remaining
model-uncertain alignments. To achieve this, we further propose an enhanced
alignment model that is built on the current state-of-the-art baseline. In
addition, to address the many-to-one problem, we propose to jointly predict
entity alignments so that the one-to-one constraint can be naturally
incorporated into the alignment prediction. Experimental results show that our
model achieves the state-of-the-art performance and our reasoning methods can
also significantly improve existing baselines.
Related papers
- Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment [19.145556156889064]
Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features.
We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness.
We are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching.
arXiv Detail & Related papers (2024-06-19T04:57:35Z) - Best-Effort Adaptation [62.00856290846247]
We present a new theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights.
We show how these bounds can guide the design of learning algorithms that we discuss in detail.
We report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms.
arXiv Detail & Related papers (2023-05-10T00:09:07Z) - Context-Aware Ensemble Learning for Time Series [11.716677452529114]
We introduce a new approach using a meta learner that effectively combines the base model predictions via using a superset of the features that is the union of the base models' feature vectors instead of the predictions themselves.
Our model does not use the predictions of the base models as inputs to a machine learning algorithm, but choose the best possible combination at each time step based on the state of the problem.
arXiv Detail & Related papers (2022-11-30T10:36:13Z) - Language Model Decoding as Likelihood-Utility Alignment [54.70547032876017]
We introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility.
Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy.
arXiv Detail & Related papers (2022-10-13T17:55:51Z) - Deep Reinforcement Learning for Entity Alignment [25.78510840144251]
We propose a reinforcement learning (RL)-based entity alignment framework.
It can be flexibly adapted to most embedding-based entity alignment methods.
It consistently advances the performance of several state-of-the-art methods, with a maximum improvement of 31.1% on Hits@1.
arXiv Detail & Related papers (2022-03-07T11:49:40Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Reinforcement Learning based Collective Entity Alignment with Adaptive
Features [35.04861875266298]
We propose a reinforcement learning (RL) based model to align entities collectively.
Under the RL framework, we devise the coherence and exclusiveness constraints to characterize the interdependence and collective alignment.
Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks and compared against state-of-the-art solutions.
arXiv Detail & Related papers (2021-01-05T05:04:09Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z) - Fast Template Matching and Update for Video Object Tracking and
Segmentation [56.465510428878]
The main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames.
The challenges lie in the selection of the matching method to predict the result as well as to decide whether to update the target template.
We propose a novel approach which utilizes reinforcement learning to make these two decisions at the same time.
arXiv Detail & Related papers (2020-04-16T08:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.